Precise Measurement of the Neutron Beta Decay Parameters *a* and *b*

Dinko Počanić, for the Nab Collaboration

University of Virginia

DoE Review of the FnPB/SNS, Oak Ridge, 23 April 2009

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 1 / 24

JOC E

イロト イポト イヨト イヨト

Outline

Outline

Motivation and Goals

Measurement principles

Proton TOF and $e-\nu$ correlation Spectrometer design Detection function

Overview of uncertainties

Event statistics, rates, running time Systematic uncertainties

Asymmetric design

Spectrometer basics

Summary

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 2 / 24

・ 同下 ・ ヨト ・ ヨト

Goals of the Experiment

Measure the electron-neutrino parameter a in neutron decay

with accuracy of

$$\frac{\Delta a}{a}\simeq 10^{-3}$$

 $\begin{array}{rl} -0.1054 \pm 0.0055 & \mbox{Byrne et al '02} \\ \mbox{current results:} & -0.1017 \pm 0.0051 & \mbox{Stratowa et al '78} \\ & -0.091 \pm 0.039 & \mbox{Grigorev et al '68} \end{array}$

Measure the Fierz interference term b in neutron decay

with accuracy of

 $\Delta b \simeq 3 imes 10^{-3}$

current results:

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 3 / 24

イロト 人間ト イヨト イヨト

Goals of the Experiment

Measure the electron-neutrino parameter a in neutron decay

$$\frac{\Delta a}{a}\simeq 10^{-3}$$

 $\begin{array}{rl} -0.1054 \pm 0.0055 & \mbox{Byrne et al '02} \\ \mbox{current results:} & -0.1017 \pm 0.0051 & \mbox{Stratowa et al '78} \\ & -0.091 \pm 0.039 & \mbox{Grigorev et al '68} \end{array}$

Measure the Fierz interference term b in neutron decay

with accuracy of

$$\Delta b \simeq 3 imes 10^{-3}$$

current results:

none

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 3 / 24

イロト 人間ト イヨト イヨト

Goals of the Experiment

Measure the electron-neutrino parameter a in neutron decay

with accuracy of

$$\frac{\Delta a}{a}\simeq 10^{-3}$$

 $\begin{array}{rl} -0.1054 \pm 0.0055 & \mbox{Byrne et al '02} \\ \mbox{current results:} & -0.1017 \pm 0.0051 & \mbox{Stratowa et al '78} \\ & -0.091 \pm 0.039 & \mbox{Grigorev et al '68} \end{array}$

Measure the Fierz interference term b in neutron decay

with accuracy of

 $\Delta b\simeq 3\times 10^{-3}$

current results:

none

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 3 / 24

イロト 人間ト イヨト イヨト

Goals of the Experiment

Measure the electron-neutrino parameter a in neutron decay

with accuracy of

$$\frac{\Delta a}{a}\simeq 10^{-3}$$

 $\begin{array}{rl} -0.1054 \pm 0.0055 & \mbox{Byrne et al '02} \\ \mbox{current results:} & -0.1017 \pm 0.0051 & \mbox{Stratowa et al '78} \\ & -0.091 \pm 0.039 & \mbox{Grigorev et al '68} \end{array}$

Measure the Fierz interference term b in neutron decay

with accuracy of

 $\Delta b \simeq 3 \times 10^{-3}$

current results:

none

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 3 / 24

- 4 週 ト - 4 三 ト - 4 三 ト

Neutron Decay Parameters (SM)

$$\begin{split} \frac{dw}{dE_e d\Omega_e d\Omega_\nu} &\simeq k_e E_e (E_0 - E_e)^2 \\ &\times \left[1 + a \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} + b \frac{m}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{k}_e}{E_e} + B \frac{\vec{k}_\nu}{E_\nu} + D \frac{\vec{k}_e \times \vec{k}_\nu}{E_e E_\nu} \right) \right] \end{split}$$
with:

$$a &= \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} \qquad A = -2 \frac{|\lambda|^2 + \text{Re}(\lambda)}{1 + 3|\lambda|^2}$$

$$B &= 2 \frac{|\lambda|^2 - \text{Re}(\lambda)}{1 + 3|\lambda|^2} \qquad D = 2 \frac{\text{Im}(\lambda)}{1 + 3|\lambda|^2}$$

D. Počanić (UVa) The Nab Experiment/FnPB/SNS

23 Apr '09 4 / 24

 $(\mathbf{D} \neq \mathbf{0} \Leftrightarrow \mathbf{T} \text{ inv. violation})$

Neutron Decay Parameters (SM)

$$\begin{split} \frac{dw}{d\mathsf{E}_{e}d\Omega_{e}d\Omega_{\nu}} &\simeq \mathsf{k}_{e}\mathsf{E}_{e}(\mathsf{E}_{0}-\mathsf{E}_{e})^{2} \\ &\times \left[1+\mathsf{a}\frac{\vec{\mathsf{k}}_{e}\cdot\vec{\mathsf{k}}_{\nu}}{\mathsf{E}_{e}\mathsf{E}_{\nu}}+\mathsf{b}\frac{\mathsf{m}}{\mathsf{E}_{e}}+\langle\vec{\sigma}_{\mathsf{n}}\rangle\cdot\left(\mathsf{A}\frac{\vec{\mathsf{k}}_{e}}{\mathsf{E}_{e}}+\mathsf{B}\frac{\vec{\mathsf{k}}_{\nu}}{\mathsf{E}_{\nu}}+\mathsf{D}\frac{\vec{\mathsf{k}}_{e}\times\vec{\mathsf{k}}_{\nu}}{\mathsf{E}_{e}\mathsf{E}_{\nu}}\right)\right] \\ \text{with:} \\ &\mathsf{a}=\frac{1-|\lambda|^{2}}{1+3|\lambda|^{2}} \qquad \mathsf{A}=-2\frac{|\lambda|^{2}+\mathsf{Re}(\lambda)}{1+3|\lambda|^{2}} \\ &\mathsf{B}=2\frac{|\lambda|^{2}-\mathsf{Re}(\lambda)}{1+3|\lambda|^{2}} \qquad \mathsf{D}=2\frac{\mathsf{Im}(\lambda)}{1+3|\lambda|^{2}} \\ &\mathsf{A}=\frac{\mathsf{G}_{\mathsf{A}}}{\mathsf{G}_{\mathsf{V}}} (\text{with }\tau_{\mathsf{n}}\Rightarrow\mathsf{CKM}\;\mathsf{V}_{\mathsf{ud}}) \qquad (\mathsf{D}\neq 0\Leftrightarrow\mathsf{T}\text{ inv. violation}) \end{split}$$

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 4 / 24

Neutron Decay Parameters (SM)

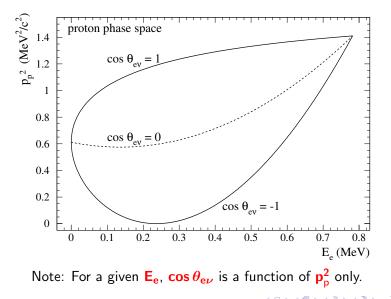
$$\begin{split} \frac{dw}{dE_e d\Omega_e d\Omega_\nu} &\simeq k_e E_e (E_0 - E_e)^2 \\ &\times \left[1 + a \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} + b \frac{m}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{k}_e}{E_e} + B \frac{\vec{k}_\nu}{E_\nu} + D \frac{\vec{k}_e \times \vec{k}_\nu}{E_e E_\nu} \right) \right] \\ \text{with:} \\ &a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} \qquad A = -2 \frac{|\lambda|^2 + \text{Re}(\lambda)}{1 + 3|\lambda|^2} \\ &B = 2 \frac{|\lambda|^2 - \text{Re}(\lambda)}{1 + 3|\lambda|^2} \qquad D = 2 \frac{\text{Im}(\lambda)}{1 + 3|\lambda|^2} \\ &\lambda = \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \text{CKM } V_{ud} \text{)} \qquad (D \neq 0 \Leftrightarrow \text{T inv. violation}) \\ &\leftarrow 0 \Leftrightarrow \text{T inv. violation} \end{pmatrix} \end{split}$$

'l 🔻 ud / Gv D. Počanić (UVa)

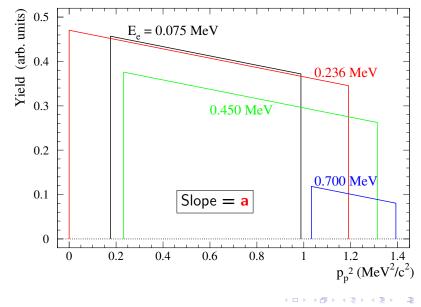
The Nab Experiment/FnPB/SNS

23 Apr '09 4 / 24

n-decay Correlation Parameters Beyond Vud


- Beta decay parameters constrain L-R symmetric, SUSY extensions to the SM. [Reviews: Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001), N. Severijns, M. Beck, O. Naviliat-Čunčić, Rev. Mod. Phys. 78, 991 (2006), Ramsey-Musolf, Su, Phys. Rep. 456, 1 (2008)]
- Fierz interference term, never measured for the neutron, offers a sensitive test of non-(V A) terms in the weak Lagrangian (S, T).
 [S. Profumo, M. J. Ramsey-Musolf, S. Tulin, PRD 75, 075017 (2007)]
- Measurement of the electron-energy dependence of *a* and *A* can separately confirm CVC and absence of SCC.
 [Gardner, Zhang, PRL 86, 5666 (2001), Gardner, hep-ph/0312124]
- ► A general connections exists between non-SM (e.g., S, T) terms in $d \rightarrow ue\bar{\nu}$ and limits on ν masses. [Ito + Prézaeu, PRL 94 (2005)]

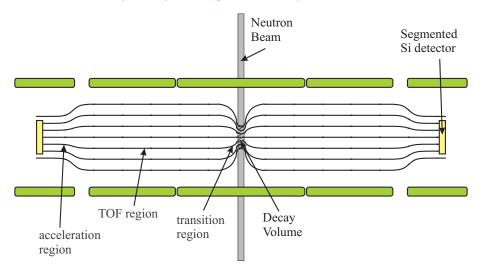
D. Počanić (UVa)


The Nab Experiment/FnPB/SNS

23 Apr '09 5 / 24

Nab Measurement principles: Proton phase space

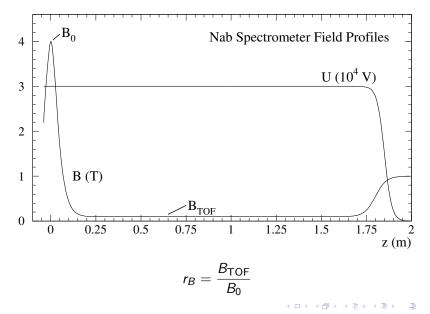
Measurement principles: Proton momentum response


D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 7 / 24

Measurement principles Spectrometer design


Measurement principles: Symmetric pectrometer

Elements of spectrometer to be shared with other planned n decay experiments, e.g., abBA.

8 / 24

Measurement principles: Spectrometer field profiles

The Nab Experiment/FnPB/SNS

23 Apr '09 9 / 24

Measurement principles: Detection function (I)

Proton time of flight in B field:

$$t_{\rm p} = \frac{f(\cos \theta_{\rm p,0})}{p_{\rm p}} \qquad \text{where} \qquad \cos \theta_{\rm p,0} = \left. \frac{\vec{p}_{\rm p0} \cdot \vec{B}}{p_{\rm p0} B} \right|_{\rm decay \ pt.}$$

For an adiabatically expanding field prior to acceleration,

$$f(\cos \theta_{p,0}) = \int_{z_0}^{t} \frac{m_{\rm p} \, dz}{\cos \theta_{\rm p}(z)} = \int_{z_0}^{t} \frac{m_{\rm p} \, dz}{\sqrt{1 - \frac{B(z)}{B_0} \sin^2 \theta_{\rm p,0}}}$$

To this we add effects of magnetic reflections and, later, of electric field acceleration.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 10 / 24

The proton momentum distribution within the phase space bounds is given by

$$P_p(p_p^2) = 1 + a\beta_e \cos \theta_{e\nu}$$
, [recall: $\cos \theta_{e\nu} = f(p_p^2)$]

while

$$P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2.$$

Detection function Φ relates the proton momentum and time-of-flight distributions! To extract **a** reliably:

- Φ must be as narrow as possible,
- Φ must be understood very precisely.

Two methods ("A" and "B") pursued to specify Φ .

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 11 / 24

The proton momentum distribution within the phase space bounds is given by

$$\mathcal{P}_{
ho}(p_{
m p}^2) = 1 + a eta_e \cos heta_{e
u} \,, \qquad [{
m recall:} \ \cos heta_{e
u} = f(p_{
m p}^2)]$$

while

$$P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2.$$

Detection function Φ relates the proton momentum and time-of-flight distributions! To extract **a** reliably:

- Φ must be as narrow as possible,
- Φ must be understood very precisely.

Two methods ("A" and "B") pursued to specify Φ .

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 11 / 24

The proton momentum distribution within the phase space bounds is given by

$$\mathcal{P}_{
ho}(p_{
m p}^2) = 1 + a eta_e \cos heta_{e
u} \,, \qquad [{
m recall:} \ \cos heta_{e
u} = f(p_{
m p}^2)]$$

while

$$P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2.$$

Detection function Φ relates the proton momentum and time-of-flight distributions! To extract a reliably:

- Φ must be as narrow as possible,
- Φ must be understood very precisely.

Two methods ("A" and "B") pursued to specify $\Phi.$

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 11 / 24

The proton momentum distribution within the phase space bounds is given by

$$\mathcal{P}_{
ho}(p_{
m p}^2) = 1 + a eta_e \cos heta_{e
u} \,, \qquad [{
m recall:} \ \cos heta_{e
u} = f(p_{
m p}^2)]$$

while

$$P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2.$$

Detection function Φ relates the proton momentum and time-of-flight distributions! To extract **a** reliably:

- Φ must be as narrow as possible,
- Φ must be understood very precisely.

Two methods ("A" and "B") pursued to specify $\Phi.$

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 11 / 24

The proton momentum distribution within the phase space bounds is given by

$$\mathcal{P}_{
ho}(p_{
m p}^2) = 1 + a eta_e \cos heta_{e
u} \,, \qquad [{
m recall:} \ \cos heta_{e
u} = f(p_{
m p}^2)]$$

while

$$P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2.$$

Detection function Φ relates the proton momentum and time-of-flight distributions! To extract **a** reliably:

Φ must be as narrow as possible,

```
Φ must be understood very precisely.
```

Two methods ("A" and "B") pursued to specify Φ .

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 11 / 24

The proton momentum distribution within the phase space bounds is given by

$$\mathcal{P}_{
ho}(p_{
m p}^2) = 1 + a eta_e \cos heta_{e
u} \,, \qquad [{
m recall:} \ \cos heta_{e
u} = f(p_{
m p}^2)]$$

while

$$P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2.$$

Detection function Φ relates the proton momentum and time-of-flight distributions! To extract **a** reliably:

- Φ must be as narrow as possible,
- Φ must be understood very precisely.

Two methods ("A" and "B") pursued to specify Φ .

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 11 / 24

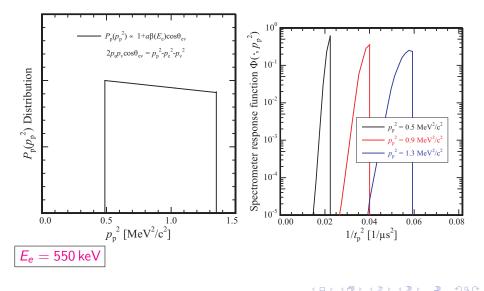
The proton momentum distribution within the phase space bounds is given by

$$\mathcal{P}_{p}(p_{p}^{2}) = 1 + a\beta_{e}\cos\theta_{e
u}$$
, [recall: $\cos\theta_{e
u} = f(p_{p}^{2})$]

while

$$P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2.$$

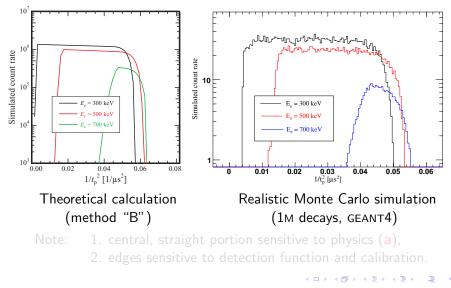
Detection function Φ relates the proton momentum and time-of-flight distributions! To extract **a** reliably:


- Φ must be as narrow as possible,
- Φ must be understood very precisely.

Two methods ("A" and "B") pursued to specify Φ .

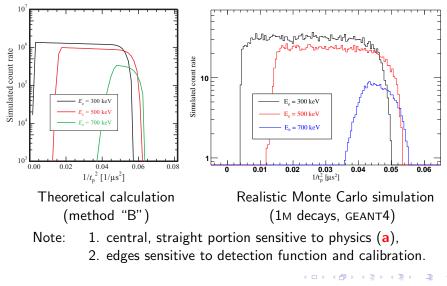
D. Počanić (UVa)

The Nab Experiment/FnPB/SNS


23 Apr '09 11 / 24

D. Počanić (UVa)

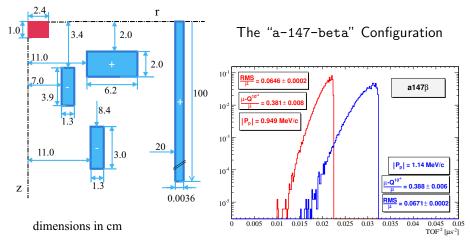
The Nab Experiment/FnPB/SNS


23 Apr '09 12 / 24

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 13 / 24



D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 13 / 24

Optimized symmetric spectrometer

Current density: 3500 A/cm²

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 14 / 24

(日)

Statistical uncertainties for **a** and **b**

Statistical uncertainties for a

$E_{\rm e,min}$		100 keV	100 keV	300 keV
$t_{ m p,max}$			$10\mu { m s}$	$10\mu { m s}$
σ_{a}	$2.4/\sqrt{N}$	$2.5/\sqrt{N}$	$2.6/\sqrt{N}$	$3.5/\sqrt{N}$
$\sigma_{ m a}{}^{\dagger}$	$2.5/\sqrt{N}$	$2.6/\sqrt{N}$		

 † with $\boldsymbol{\mathsf{E}_{\mathrm{cal}}}$ and I variable.

Statistical uncertainties for **b**

$E_{\rm e,min}$		100 keV	200 keV	300 keV
			$15.6/\sqrt{N}$	
$\sigma_{ m b}{}^{\dagger\dagger}$	$7.7/\sqrt{N}$	$10.3/\sqrt{N}$	$16.3/\sqrt{N}$	$27.7/\sqrt{N}$

^{††} with E_{cal} variable.

イロト 不得 トイヨト イヨト 二日

Statistical uncertainties for **a** and **b**

Statistical uncertainties for a					
$E_{\rm e,min}$	0	100 keV	100 keV	300 keV	
$t_{ m p,max}$	-	-	$10\mu { m s}$	$10\mu { m s}$	
σ_{a}	$2.4/\sqrt{N}$	$2.5/\sqrt{N}$	$2.6/\sqrt{N}$	$3.5/\sqrt{N}$	
σ_{a}^{\dagger}	$2.5/\sqrt{N}$	$2.6/\sqrt{N}$	—	—	

^{\dagger} with E_{cal} and I variable.

Statistical uncertainties for **b**

$E_{\rm e,min}$		100 keV	200 keV	300 keV
	$7.5/\sqrt{N}$	$10.1/\sqrt{N}$	$15.6/\sqrt{N}$	$26.3/\sqrt{N}$
$\sigma_{ m b}$ ††	$7.7/\sqrt{N}$	$10.3/\sqrt{N}$	$16.3/\sqrt{N}$	$27.7/\sqrt{N}$

^{††} with E_{cal} variable.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 15 / 24

イロン 不聞 と 不良 と 不良 とう 油

Statistical uncertainties for **a** and **b**

Statistical uncertainties for a					
$E_{\rm e,min}$	0	100 keV	100 keV	300 keV	
$t_{ m p,max}$	-	-	$10\mu { m s}$	$10\mu { m s}$	
σ_{a}	$2.4/\sqrt{N}$	$2.5/\sqrt{N}$	$2.6/\sqrt{N}$	$3.5/\sqrt{N}$	
σ_{a}^{\dagger}	2.5/\(\nl\)N	$2.6/\sqrt{N}$	-	—	

^{\dagger} with E_{cal} and I variable.

Statistical uncertainties for ${\boldsymbol{\mathsf{b}}}$

$E_{\rm e,min}$	0	100 keV	200 keV	300 keV
σ_{b}	$7.5/\sqrt{N}$	$10.1/\sqrt{N}$	$15.6/\sqrt{N}$	$26.3/\sqrt{N}$
$\sigma_{ m b}{}^{\dagger\dagger}$	$7.7/\sqrt{N}$	$10.3/\sqrt{N}$	$16.3/\sqrt{N}$	$27.7/\sqrt{N}$

^{††} with E_{cal} variable.

<ロ> (日) (日) (日) (日) (日)

Event rates, statistics and running times

FnPB **n** decay rate w/nominal 1.4 MW SNS operation: $r_n \simeq 19.5/(cm^3 s)$.

Nab fiducial volume is: $V_f \simeq \frac{\pi}{2} 2.4^2 \times 2 \text{cm}^3 \simeq 18 \text{ cm}^3$.

This gives a rate of about 350 evts./s.

In a typical \sim 10-day run of 7 imes 10⁵ s of net beam time we would achieve

 $rac{\sigma_{\mathsf{a}}}{\mathsf{a}}\simeq 2 imes 10^{-3}$ and $\sigma_{\mathsf{b}}\simeq 6 imes 10^{-4}$

We plan to collect several samples of 10^9 events in several 6-week runs.

Consequently, overall accuracy will not be statistics-limited.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 16 / 24

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Event rates, statistics and running times

FnPB **n** decay rate w/nominal 1.4 MW SNS operation: $r_n \simeq 19.5/(\text{cm}^3\text{s})$.

Nab fiducial volume is: $V_f \simeq \frac{\pi}{2} 2.4^2 \times 2 \text{cm}^3 \simeq 18 \text{ cm}^3$.

This gives a rate of about 350 evts./s.

In a typical $\sim 10\text{-day}$ run of $7\times 10^5\,\text{s}$ of net beam time we would achieve

$$rac{\sigma_{\mathsf{a}}}{\mathsf{a}}\simeq 2 imes 10^{-3}$$
 and $\sigma_{\mathsf{b}}\simeq 6 imes 10^{-4}$

We plan to collect several samples of 10^9 events in several 6-week runs.

Consequently, overall accuracy will **not be statistics-limited**.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 16 / 24

Event rates, statistics and running times

FnPB n decay rate w/nominal 1.4 MW SNS operation: $r_n \simeq 19.5/(cm^3s)$.

Nab fiducial volume is: $V_{f} \simeq rac{\pi}{2} 2.4^2 \times 2 \text{cm}^3 \simeq 18 \text{ cm}^3$.

This gives a rate of about 350 evts./s .

In a typical $\sim 10\text{-day}$ run of $7\times 10^5\,\text{s}$ of net beam time we would achieve

 $rac{\sigma_{a}}{a}\simeq 2 imes 10^{-3}$ and $\sigma_{b}\simeq 6 imes 10^{-4}$

We plan to collect several samples of 10^9 events in several 6-week runs.

Consequently, overall accuracy will not be statistics-limited.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 16 / 24

Systematic uncertainties and checks

- Uncertainties due to spectrometer response
 - Neutron beam profile: $100 \,\mu$ m shift of beam center induces $\Delta a/a \sim 0.2$ %; cancels when averaging over detectors; measurement of asymmetry pins it down sufficiently;
 - Magnetic field map:

field expansion ratio $r_{\rm B} = B_{\rm TOF}/B_0$; $\Delta a/a \sim 10^{-3} \Rightarrow \Delta r_{\rm B}/r_{\rm B} = 10^{-3}$, (use calibrated Hall probe); field curvature α , (via proton asymmetry measurement); field bumps $\Delta B/B$ must be kept below 2×10^{-3} level;

- Flight path length: $\Delta I \leq 30 \,\mu m \Rightarrow$ fitting parameter; (\exists consistency check);
- Homogeneity of the electric field;
- Rest gas: requires vacuum of 10^{-9} torr or better;
- Doppler effect;
- Adiabaticity;

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 17 / 24

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - ○ ○ ○ ○

Systematic uncertainties and checks (II)

Uncertainties due to the detector

- Detector alignment;
- Electron energy calibration: requirement 10⁻⁴; we'll use radioactive sources, other strategies, also as fitting parameter;
- Trigger hermiticity: affected by impact angle, backscattering, TOF cutoff (to reduce accid. bgd.);
- TOF uncertainties;
- Edge effects;

Backgrounds

- Neutron beam related background;
- Particle trapping;
- Uncertainties in b: fewer than for a (no proton detection); dominant are energy calibration and electron backgrounds.

Asymmetric spectrometer

Four serious challenges can be relieved in an asymmetric spectrometer:

- Achieving a long flight path for protons and, hence, high t_p (TOF) resolution,
- Achieving a high degree of proton momentum linearization, and, hence, accuracy of the p_p-t_p relationship (narrow detection function),
- Greatly reducing the sensitivity to particle trapping in small field imperfections in the neutron decay region, and
- ► Reducing the influence of small nonuniformities in electric potential from $\sim \mu V$ level to a more controllable $\sim mV$ level.

Key strategy:

- ▶ Move the high-field pinch away from the neutron decay region,
- ► Have one main, long TOF spectrometer side.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 19 / 24

イロト 不得下 イヨト イヨト 二日

Asymmetric spectrometer

Four serious challenges can be relieved in an asymmetric spectrometer:

- Achieving a long flight path for protons and, hence, high t_p (TOF) resolution,
- Achieving a high degree of proton momentum linearization, and, hence, accuracy of the pp-tp relationship (narrow detection function),
- Greatly reducing the sensitivity to particle trapping in small field imperfections in the neutron decay region, and
- ► Reducing the influence of small nonuniformities in electric potential from $\sim \mu V$ level to a more controllable $\sim mV$ level.

Key strategy:

- ▶ Move the high-field pinch away from the neutron decay region,
- ► Have one main, long TOF spectrometer side.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 19 / 24

Asymmetric spectrometer

Four serious challenges can be relieved in an asymmetric spectrometer:

- Achieving a long flight path for protons and, hence, high t_p (TOF) resolution,
- Achieving a high degree of proton momentum linearization, and, hence, accuracy of the pp-tp relationship (narrow detection function),
- Greatly reducing the sensitivity to particle trapping in small field imperfections in the neutron decay region, and
- ► Reducing the influence of small nonuniformities in electric potential from $\sim \mu V$ level to a more controllable $\sim mV$ level.

Key strategy:

- ▶ Move the high-field pinch away from the neutron decay region,
- ► Have one main, long TOF spectrometer side.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 19 / 24

Asymmetric spectrometer

Four serious challenges can be relieved in an asymmetric spectrometer:

- Achieving a long flight path for protons and, hence, high t_p (TOF) resolution,
- Achieving a high degree of proton momentum linearization, and, hence, accuracy of the pp-tp relationship (narrow detection function),
- Greatly reducing the sensitivity to particle trapping in small field imperfections in the neutron decay region, and
- Reducing the influence of small nonuniformities in electric potential from ~ μV level to a more controllable ~mV level.

Key strategy:

- ▶ Move the high-field pinch away from the neutron decay region,
- ► Have one main, long TOF spectrometer side.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 19 / 24

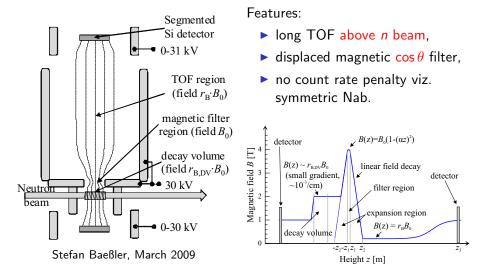
Asymmetric spectrometer

Four serious challenges can be relieved in an asymmetric spectrometer:

- Achieving a long flight path for protons and, hence, high t_p (TOF) resolution,
- Achieving a high degree of proton momentum linearization, and, hence, accuracy of the pp-tp relationship (narrow detection function),
- Greatly reducing the sensitivity to particle trapping in small field imperfections in the neutron decay region, and
- Reducing the influence of small nonuniformities in electric potential from ~ μV level to a more controllable ~mV level.

Key strategy:

- Move the high-field pinch away from the neutron decay region,
- ► Have one main, long TOF spectrometer side.


D. Počanić (UVa)

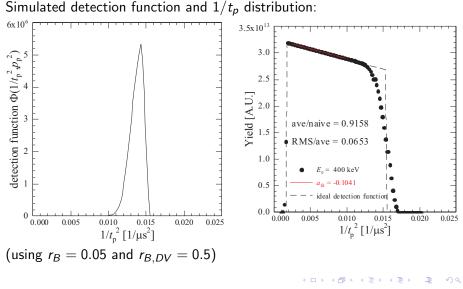
The Nab Experiment/FnPB/SNS

23 Apr '09 19 / 24

Asymmetric design Spectrometer basics

Basic design and features of asymmetric Nab

D. Počanić (UVa)


The Nab Experiment/FnPB/SNS

23 Apr '09 20 / 24

-

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Asymmetric Nab: expected performance

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 21 / 24

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay parameters **a** and **b** with $\Delta a/a \simeq 10^{-3}$ and $\Delta b \simeq 3 \times 10^{-3}$.

- Basic properties of the symmetric Nab spectrometer are well understood and highly optimized.
- The new asymmetric Nab idea looks very promising; details are under extensive analytical and Monte Carlo study.
- Elements of spectrometer may be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning sometime in 2011.
- Crude budget estimate ~ \$2.5 M.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 22 / 24

イロト イポト イヨト イヨト

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay parameters **a** and **b** with $\Delta a/a \simeq 10^{-3}$ and $\Delta b \simeq 3 \times 10^{-3}$.

- Basic properties of the symmetric Nab spectrometer are well understood and highly optimized.
- The new asymmetric Nab idea looks very promising; details are under extensive analytical and Monte Carlo study.
- Elements of spectrometer may be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning sometime in 2011.
- Crude budget estimate ~ \$2.5 M.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 22 / 24

イロト 不得下 イヨト イヨト 二日

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay parameters **a** and **b** with $\Delta a/a \simeq 10^{-3}$ and $\Delta b \simeq 3 \times 10^{-3}$.

- Basic properties of the symmetric Nab spectrometer are well understood and highly optimized.
- The new asymmetric Nab idea looks very promising; details are under extensive analytical and Monte Carlo study.
- Elements of spectrometer may be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning sometime in 2011.
- Crude budget estimate ~ \$2.5 M.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 22 / 24

イロト 不得 トイヨト イヨト 二日

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay parameters **a** and **b** with $\Delta a/a \simeq 10^{-3}$ and $\Delta b \simeq 3 \times 10^{-3}$.

- Basic properties of the symmetric Nab spectrometer are well understood and highly optimized.
- The new asymmetric Nab idea looks very promising; details are under extensive analytical and Monte Carlo study.
- Elements of spectrometer may be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning sometime in 2011.
- Crude budget estimate ~ \$2.5 M.

D. Počanić (UVa)

イロト 不得 とくまとう ほう

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay parameters **a** and **b** with $\Delta a/a \simeq 10^{-3}$ and $\Delta b \simeq 3 \times 10^{-3}$.

- Basic properties of the symmetric Nab spectrometer are well understood and highly optimized.
- The new asymmetric Nab idea looks very promising; details are under extensive analytical and Monte Carlo study.
- Elements of spectrometer may be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning sometime in 2011.
- Crude budget estimate ~ \$2.5 M.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 22 / 24

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay parameters **a** and **b** with $\Delta a/a \simeq 10^{-3}$ and $\Delta b \simeq 3 \times 10^{-3}$.

- Basic properties of the symmetric Nab spectrometer are well understood and highly optimized.
- The new asymmetric Nab idea looks very promising; details are under extensive analytical and Monte Carlo study.
- Elements of spectrometer may be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning sometime in 2011.
- Crude budget estimate ~ \$2.5 M.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 22 / 24

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay parameters **a** and **b** with $\Delta a/a \simeq 10^{-3}$ and $\Delta b \simeq 3 \times 10^{-3}$.

- Basic properties of the symmetric Nab spectrometer are well understood and highly optimized.
- The new asymmetric Nab idea looks very promising; details are under extensive analytical and Monte Carlo study.
- Elements of spectrometer may be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning sometime in 2011.
- Crude budget estimate ~ \$2.5 M.

D. Počanić (UVa)

- 1. Nab: goal is to measure $\Delta a/a \sim 10^{-3}$
 - Best statistical sensitivity,
 - Challenging but manageable systematics, esp. in asymm. design.
- 2. abBA: goal is to measure $\Delta a/a \sim 10^{-3}$
 - Similar to Nab, but with a spectrometer optimized for A,B,
 - Detection function is very broad, syst. uncert. for a very demanding.
- 3. <code>aCORN</code>: goal is to measure $\Delta a/a \sim 0.5-2\,\%$
 - Funded, under construction,
 - Uses only part of neutron decays.
- 4. aSPECT: aims to measure $\Delta a/a \sim 10^{-3}$
 - Funded and running; recently overcame trapping problems,
 - Stat. sensitivity not as good as Nab due to integration; presently
 ~ 2 %/day—will likely improve on publ. results, not < 1 % this run

 - Easier determination of detection function than in Nab at the present level of accuracy.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 23 / 24

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - ○ ○ ○ ○

- 1. Nab: goal is to measure $\Delta a/a \sim 10^{-3}$
 - Best statistical sensitivity,
 - Challenging but manageable systematics, esp. in asymm. design.
- 2. abBA: goal is to measure $\Delta a/a \sim 10^{-3}$
 - Similar to Nab, but with a spectrometer optimized for A,B,
 - ► Detection function is very broad, syst. uncert. for a very demanding.
- 3. <code>aCORN</code>: goal is to measure $\Delta a/a \sim 0.5 2\,\%$
 - Funded, under construction,
 - Uses only part of neutron decays.
- 4. aSPECT: aims to measure $\Delta a/a \sim 10^{-3}$
 - Funded and running; recently overcame trapping problems,
 - Stat. sensitivity not as good as Nab due to integration; presently
 ~ 2 %/day—will likely improve on publ. results, not < 1 % this run

 - Easier determination of detection function than in Nab at the present level of accuracy.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 23 / 24

- 1. Nab: goal is to measure $\Delta a/a \sim 10^{-3}$
 - Best statistical sensitivity,
 - Challenging but manageable systematics, esp. in asymm. design.
- 2. abBA: goal is to measure $\Delta a/a \sim 10^{-3}$
 - Similar to Nab, but with a spectrometer optimized for A,B,
 - ▶ Detection function is very broad, syst. uncert. for a very demanding.
- 3. aCORN: goal is to measure $\Delta a/a \sim 0.5 2\%$
 - Funded, under construction,
 - Uses only part of neutron decays.
- 4. aSPECT: aims to measure $\Delta a/a \sim 10^{-3}$
 - Funded and running; recently overcame trapping problems,
 - Stat. sensitivity not as good as Nab due to integration; presently
 ~ 2 %/day—will likely improve on publ. results, not < 1 % this run

 - Easier determination of detection function than in Nab at the present level of accuracy.

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 23 / 24

- 1. Nab: goal is to measure $\Delta a/a \sim 10^{-3}$
 - Best statistical sensitivity,
 - Challenging but manageable systematics, esp. in asymm. design.
- 2. abBA: goal is to measure $\Delta a/a \sim 10^{-3}$
 - Similar to Nab, but with a spectrometer optimized for A,B,
 - ▶ Detection function is very broad, syst. uncert. for a very demanding.
- 3. aCORN: goal is to measure $\Delta a/a \sim 0.5 2\%$
 - Funded, under construction,
 - Uses only part of neutron decays.
- 4. aSPECT: aims to measure $\Delta a/a \sim 10^{-3}$
 - Funded and running; recently overcame trapping problems,
 - Stat. sensitivity not as good as Nab due to integration; presently $\sim 2 \,\%/day$ —will likely improve on publ. results, not $< 1 \,\%$ this run,
 - Easier determination of detection function than in Nab at the present level of accuracy.

D. Počanić (UVa)

The Nab collaboration

R. Alarcon¹, L.P. Alonzi², S. Baeßler^{2*}, S. Balascuta¹, J.D. Bowman^{3†},
M.A. Bychkov², J. Byrne⁴, J.R. Calarco⁵, V. Cianciolo³, C. Crawford⁶,
E. Frlež², M.T. Gericke⁷, F. Glück⁸, G.L. Greene⁹, R.K. Grzywacz⁹,
V. Gudkov¹⁰, F.W. Hersman⁵, A. Klein¹¹, J. Martin¹², S.A. Page⁶,
A. Palladino², S.I. Penttilä³, D. Počanić^{2†}, K.P. Rykaczewski³,
W.S. Wilburn¹¹, A.R. Young¹³, G.R. Young³.

¹Arizona State University ³Oak Ridge National Lab ⁵Univ. of New Hampshire ⁷University of Manitoba ⁹University of Tennessee ¹¹Los Alamos National Lab ¹³North Carlolina State Univ. ²University of Virginia
⁴University of Sussex
⁶University of Kentucky
⁸Uni. Karlsruhe/RMKI Budapest
¹⁰University of South Carolina
¹²University of Winnipeg

*Experiment Manager [†]Co-spokesmen Home page: http://nab.phys.virginia.edu/

D. Počanić (UVa)

The Nab Experiment/FnPB/SNS

23 Apr '09 24 / 24

< 回 ト < 三 ト < 三 ト