Magnetic and Electric Fields

- Magnetic field expansion: $\vec{p_e}$ more normal to detector
- Magnetic field gradient reflects backscattered electrons
- Electric field accelerates protons

Field Strength

- Driven by particle orbit radii at detector
- Pixel size is 0.6 mm (side of hexagon)
- Optimal is 4 T for 4:1 field expansion
- Reducing field requires reducing expansion ratio (increasing backscatter) or fiducial volume

Homogeneity in Decay Region

- Correction to A from electron reflections $1 + \frac{1}{6} \frac{dB}{B}$
- 10% homogeneity gives 1.7×10^{-3} correction
- Compare to 1×10^{-3} statistical goal
- Assumes 20% accuracy in calculating correction

Length of Flight Region

- Set by need to reconstruct backscattering events
- Must resolve timing of hits in opposing detectors

Detector Timing Resolution

- Timing information needed for e^- backscatter events
- Worst-case events have low E in one detector
- Must achieve timing resolution ~ 20 ns for 10 keV
- Figure-of-merit $E \cdot \Delta t \sim 200 \text{ keV} \cdot \text{ns}$

Electron Timing Difference

1 m detector separation

Timing Difference vs. Timing Resolution

1 m detector separation, 1 ns rise-time, 1 keV resolution

Bore Diameter

- Set by detector diameter of 16.4 cm
- 25 cm at detectors optimal

Ceramic Carrier Design

Field Transition In/Out of Magnet

- \bullet Neutron depolarization 1.5×10^{-3} required
- Compare to 1×10^{-3} statistical goal
- Assumes 20% accuracy in calculating correction
- Requires transport field
 - Details in later talk

Adiabaticity Parameter

- Neutrons depolarize when field changes faster than Larmor precession
- Adiabaticity parameter (Bowman and Penttilä)

$$\lambda = \frac{\mu B^2}{2\hbar \frac{dB}{dz}v}$$

 $\bullet~\sim 500~G$ sufficient

Monte Carlo Calculations

- Field maps from R. Alarcon
- Calculate rotation of neutron spin wave function
- Calculate spin projections on Cartesian axes
- Choose step size: halving step changes rotation $< 10^{-5}$
- Transport neutrons from z = -100 cm to z = 0
- Choose trajectories with $r_i \leq 1 \text{ cm}$ and $r_f \leq 1$
- 100 neutrons per point

Magnetic Field – No Guide Field

Magnetic Field – 1 kG Guide Field

Neutron Depolarization – Long. Guide Field

• Guide field solenoid -20 < z < -12 cm

Magnetic Field – 1 kG Guide Field (off axis)

Neutron Depolarization – Trans. Guide Field

