GEANT4 Simulation of the abBA/Nab Spectrometer: Progress Report

Emil Frlež

for the abBA/Nab Collaboration

frlez@virginia.edu

University of Virginia, Charlottesville

abBA/Nab/Panda "Common Magnet" Meeting North Carolina State University, Raleigh, NC January 8, 2006

• Mathematica, Penelope, Simion, GEANT3, GEANT4 ...?

- Mathematica, Penelope, Simion, GEANT3, GEANT4 ...?
- State-of-the-art object-oriented toolkit written in C++ for the simulation of the passage of particles through matter

- Mathematica, Penelope, Simion, GEANT3, GEANT4 ...?
- State-of-the-art object-oriented toolkit written in C++ for the simulation of the passage of particles through matter
- A world-wide collaboration of institutes, experiments, and national organizations contributing resources to the GEANT4 production service and providing mutual support

- Mathematica, Penelope, Simion, GEANT3, GEANT4 ...?
- State-of-the-art object-oriented toolkit written in C++ for the simulation of the passage of particles through matter
- A world-wide collaboration of institutes, experiments, and national organizations contributing resources to the GEANT4 production service and providing mutual support
- Extensive documentation, user manuals, user forum, problem reporting and user support, workshops, video presentations

- Mathematica, Penelope, Simion, GEANT3, GEANT4 ...?
- State-of-the-art object-oriented toolkit written in C++ for the simulation of the passage of particles through matter
- A world-wide collaboration of institutes, experiments, and national organizations contributing resources to the GEANT4 production service and providing mutual support
- Extensive documentation, user manuals, user forum, problem reporting and user support, workshops, video presentations
- G4: work in progress, while GEANT3/PAW support is discontinued

- Mathematica, Penelope, Simion, GEANT3, GEANT4 ...?
- State-of-the-art object-oriented toolkit written in C++ for the simulation of the passage of particles through matter
- A world-wide collaboration of institutes, experiments, and national organizations contributing resources to the GEANT4 production service and providing mutual support
- Extensive documentation, user manuals, user forum, problem reporting and user support, workshops, video presentations
- G4: work in progress, while GEANT3/PAW support is discontinued
- We used GEANT4 version 6.2.p01 (free ;8-)

• GEANT4 version 6.2.p01

- GEANT4 version 6.2.p01
- User code written in C++ $\,$

- GEANT4 version 6.2.p01
- User code written in C++
- Installation from UVa http server: http://dirac.phys.virginia.edu/neutron/G4.tar.gz, size 1.8M

- GEANT4 version 6.2.p01
- User code written in C++
- Installation from UVa http server: http://dirac.phys.virginia.edu/neutron/G4.tar.gz, size 1.8M
- Modular user code, contains ${\sim}125$ files

- GEANT4 version 6.2.p01
- User code written in C++
- Installation from UVa http server: http://dirac.phys.virginia.edu/neutron/G4.tar.gz, size 1.8M
- Modular user code, contains ${\sim}125$ files
- New modules can be easily added by users without intimate knowledge of over-all code structure

• Coordinate system: z = neutron beam axis, x = detector axis

- Coordinate system: z = neutron beam axis, x = detector axis
- Sensitive detectors:
 - two $100 \times 100 \times 2 \text{ mm}^3$ Silicon detectors

- Coordinate system: z = neutron beam axis, x = detector axis
- Sensitive detectors:
 - two $100 \times 100 \times 2 \text{ mm}^3$ Silicon detectors
- Passive material:
 - two pairs of split Helmholtz coils, transport solenoid magnet, polarized neutron beam coils, and 4 accelerating electrodes

- Coordinate system: z = neutron beam axis, x = detector axis
- Sensitive detectors:
 - two $100 \times 100 \times 2 \text{ mm}^3$ Silicon detectors
- Passive material:
 - two pairs of split Helmholtz coils, transport solenoid magnet, polarized neutron beam coils, and 4 accelerating electrodes
- Magnetic and electric fields defined on $1\,\rm{mm^3}$ three-dimensional grid

- Coordinate system: z = neutron beam axis, x = detector axis
- Sensitive detectors:
 - two $100 \times 100 \times 2 \text{ mm}^3$ Silicon detectors
- Passive material:
 - two pairs of split Helmholtz coils, transport solenoid magnet, polarized neutron beam coils, and 4 accelerating electrodes
- Magnetic and electric fields defined on $1\,\rm{mm^3}$ three-dimensional grid
- Individual detector components can be positioned or switched off

• Geometry of magnetic spectrometer with two split pairs, transport solenoid and polarized neutron beam coils

Electric and Magnetic Fields

Electric and Magnetic Fields

 Axial and radial components of Nab's magnetic and electric fields used in GEANT4 charged particle transport and spin tracking

Input: Cold Neutrons Energy Spectrum

Input: Cold Neutrons Energy Spectrum

• Event generator with realistic neutron energy spectrum at the input of the FNPB neutron guide

Input: Cold Neutrons Energy Spectrum

• Event generator with realistic neutron energy spectrum at the input of the FNPB neutron guide

- p. 7/12

• Integrate 12 variables: x, y, z, p_x , p_y , p_z , E, t, s, s_x , s_y , s_z

- Integrate 12 variables: x, y, z, p_x , p_y , p_z , E, t, s, s_x , s_y , s_z
- Use Cash-Karp Runge-Kutta-Fehlberg 4/5 method [ref. Numerical Recipes in C, 2nd Ed.]

- Integrate 12 variables: x, y, z, p_x , p_y , p_z , E, t, s, s_x , s_y , s_z
- Use Cash-Karp Runge-Kutta-Fehlberg 4/5 method [ref. Numerical Recipes in C, 2nd Ed.]
- Equations of motion in a combined electric and magnetic field

- Integrate 12 variables: x, y, z, p_x , p_y , p_z , E, t, s, s_x , s_y , s_z
- Use Cash-Karp Runge-Kutta-Fehlberg 4/5 method [ref. Numerical Recipes in C, 2nd Ed.]
- Equations of motion in a combined electric and magnetic field
- Spin components are treated utilizing Thomas-BMT equation

- Integrate 12 variables: x, y, z, p_x , p_y , p_z , E, t, s, s_x , s_y , s_z
- Use Cash-Karp Runge-Kutta-Fehlberg 4/5 method [ref. Numerical Recipes in C, 2nd Ed.]
- Equations of motion in a combined electric and magnetic field
- Spin components are treated utilizing Thomas-BMT equation
- $0.1 \,\mathrm{mm}$ step size, processing time $\sim 0.2 \,\mathrm{sec/per}$ event

• Detector version

- Detector version
- Magnetic and electric field maps

- Detector version
- Magnetic and electric field maps
- Neutron beam time structure, neutron beam (y, z) profiles, neutron energy spectrum and neutron polarization

- Detector version
- Magnetic and electric field maps
- Neutron beam time structure, neutron beam (y, z) profiles, neutron energy spectrum and neutron polarization
- Choice of integration method, maximum tracking step size, minimum integration step, maximum time-of-flight

- Detector version
- Magnetic and electric field maps
- Neutron beam time structure, neutron beam (y, z) profiles, neutron energy spectrum and neutron polarization
- Choice of integration method, maximum tracking step size, minimum integration step, maximum time-of-flight
- Detector energy thresholds, energy/time resolutions, pedestals, random coincidences, and noise

• Pre-defined HBook4 or ROOT histograms

- Pre-defined HBook4 or ROOT histograms
- PAW Ntuples or ROOT trees digitizing individual events

- Pre-defined HBook4 or ROOT histograms
- PAW Ntuples or ROOT trees digitizing individual events
- Simulated energy depositions and (energy,time) pairs in sensitive detectors on event-per-event basis in ASCII format

- Pre-defined HBook4 or ROOT histograms
- PAW Ntuples or ROOT trees digitizing individual events
- Simulated energy depositions and (energy,time) pairs in sensitive detectors on event-per-event basis in ASCII format
- Single event display using OpenGL or Wired

• Required experimental statistics $\sim~5\cdot10^9~{\rm decays}$

- Required experimental statistics $\sim~5\cdot10^9~{\rm decays}$
- Number of Monte Carlo events should be an order of magnitude higher

- Required experimental statistics $\sim 5 \cdot 10^9$ decays
- Number of Monte Carlo events should be an order of magnitude higher
- So far we analyzed simulation runs with 10^7 events executed on a single Linux node

- Required experimental statistics $\sim 5 \cdot 10^9$ decays
- Number of Monte Carlo events should be an order of magnitude higher
- So far we analyzed simulation runs with 10^7 events executed on a single Linux node
- Physics parameters will be extracted from comparison of data with simulation

- Required experimental statistics $\sim 5 \cdot 10^9$ decays
- Number of Monte Carlo events should be an order of magnitude higher
- So far we analyzed simulation runs with 10^7 events executed on a single Linux node
- Physics parameters will be extracted from comparison of data with simulation
- Practical options are
 - (1) to use parallelized G4 code on Linux clusters or
 - (2) to run a code on a supercomputer

• Refine EM field maps

- Refine EM field maps
- Refine the (active/passive) geometry of the detector

- Refine EM field maps
- Refine the (active/passive) geometry of the detector
- Code in the adiabatic tracking of charged particles

- Refine EM field maps
- Refine the (active/passive) geometry of the detector
- Code in the adiabatic tracking of charged particles
- Test the parallelized code