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Choice of Simulation Software

• Mathematica, Penelope, Simion, GEANT3, GEANT4 . . . ?

• State-of-the-art object-oriented toolkit written in C++ for

the simulation of the passage of particles through matter

• A world-wide collaboration of institutes, experiments, and

national organizations contributing resources to the GEANT4

production service and providing mutual support

• Extensive documentation, user manuals, user forum, problem

reporting and user support, workshops, video presentations

• G4: work in progress, while GEANT3/PAW support is

discontinued

• We used GEANT4 version 6.2.p01 (free ;8-)
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General Code Layout

• GEANT4 version 6.2.p01

• User code written in C++

• Installation from UVa http server:

http://dirac.phys.virginia.edu/neutron/G4.tar.gz,

size 1.8M

• Modular user code, contains ∼125 files

• New modules can be easily added by users without intimate

knowledge of over-all code structure
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Spectrometer Geometry I

• Coordinate system: z = neutron beam axis, x = detector axis

• Sensitive detectors:

• two 100×100×2 mm3 Silicon detectors

• Passive material:

• two pairs of split Helmholtz coils, transport solenoid

magnet, polarized neutron beam coils, and 4 accelerating

electrodes

• Magnetic and electric fields defined on 1mm3

three-dimensional grid

• Individual detector components can be positioned or switched

off
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Spectrometer Geometry II

• Geometry of magnetic spectrometer with two split pairs,

transport solenoid and polarized neutron beam coils
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Electric and Magnetic Fields

• Axial and radial components of Nab’s magnetic and electric

fields used in GEANT4 charged particle transport and spin

tracking
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Input: Cold Neutrons Energy Spectrum

• Event generator with realistic neutron energy spectrum at the

input of the FNPB neutron guide

� Neutron spectrum at the input to the 
FNPB neutron guide.
� Long wavelength structure is artificial �

bin aliasing combined with low statistics.
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e and p Tracking and n Spin Transport

• Integrate 12 variables: x, y, z, px, py, pz, E, t, s, sx, sy, sz

• Use Cash-Karp Runge-Kutta-Fehlberg 4/5 method

[ref. Numerical Recipes in C, 2nd Ed.]

• Equations of motion in a combined electric and magnetic field

• Spin components are treated utilizing Thomas-BMT equation

• 0.1mm step size, processing time ∼ 0.2 sec/per event
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Input to the Code

• Detector version

• Magnetic and electric field maps

• Neutron beam time structure, neutron beam (y, z) profiles,

neutron energy spectrum and neutron polarization

• Choice of integration method, maximum tracking step size,

minimum integration step, maximum time-of-flight

• Detector energy thresholds, energy/time resolutions,

pedestals, random coincidences, and noise
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Output of the Code

• Pre-defined HBook4 or ROOT histograms

• PAW Ntuples or ROOT trees digitizing individual events

• Simulated energy depositions and (energy,time) pairs in

sensitive detectors on event-per-event basis in ASCII format

• Single event display using OpenGL or Wired
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Monte Carlo Statistics Sample

• Required experimental statistics ∼ 5 · 109 decays

• Number of Monte Carlo events should be an order of

magnitude higher

• So far we analyzed simulation runs with 107 events executed

on a single Linux node

• Physics parameters will be extracted from comparison of data

with simulation

• Practical options are

(1) to use parallelized G4 code on Linux clusters or

(2) to run a code on a supercomputer
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To-Do-List (Preliminary)

• Refine EM field maps

• Refine the (active/passive) geometry of the detector

• Code in the adiabatic tracking of charged particles

• Test the parallelized code
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