The Nab Experiment: Examining Unpolarized Neutron Beta Decay Correlations

Jason Fry, for the Nab Collaboration

Department of Physics, Geosciences, and Astronomy, Eastern Kentucky University

October 13, 2021

APS DNP 2021 Meeting

The Nab Collaboration

R. Alarcon^a, A. Atencio^k, S.Baeßler^{b,c} (Project Manager), S. Balascuta, L. Barrón Palosⁿ, T.L. Bailey^m, K. Bassⁱ, N. Birge^{i,k}, A. Blose^f, D. Borissenko^b, M. Bowler^b, J.D. Bowman^c (Co-Spokesperson), L. Broussard^c, A.T. Bryant^b, J. Byrne^d, J.R. Calarco^{c,i}, J. Choi^m, J. Caylorⁱ, L. Christieⁱ, T. Chupp^o, T.V. Cianciolo^c, C.B. Crawford^f, M. Cruzⁱ, X. Ding^b, George Dodson^s, W. Fan^b, W. Farrar^b, N. Fominⁱ, E. Frlež^b, J. Fry^q, M.T. Gericke^g, M. Gervais^f, C. Gilbert^c, F. Glück^h, R. Godriⁱ, F. Gonzalez^c, G.L. Greene^{c,i}, R.K. Grzywaczⁱ, V. Gudkovⁱ, J. Hamblen^c, L. Hayen^m, C. Hayes^m, C. Hendrus^o, K. Imamⁱ, T. Ito^k, A. Jezghani^f, H. Li^b, M. Makela^k, N. Macsai^g, J. Mammei^g, R. Mammei^l, M. Martinez^a, D.G. Mathews^f, M. McCrea^f, P. McGaughey^k, C.D. McLaughlin^b, J. Mirabal-Martinez^k, P.E. Mueller^c, A. Nelsen^f, I. Novikov^p, D. van Petten^b, S.I. Penttilä^e (On-site Manager), D.E. Perrymanⁱ, J. Pierce^c, D. Počanić^b (Co-Spokesperson), H. Presleyⁱ, Yu Qian^b, J. Ramsey^c, G. Randall^a, G. Riley^{i,k}, K.P. Rykaczewski^c, A. Salas-Bacci^b, S. Samiei^b, A. Saunders^c, E.M. Scottⁱ, T. Shelton^f, S.K. Sjue^k, A. Smith^b, E. Smith^k, E. Stevens^b, L. Tinius^b, J. Thomison^c, J.W. Wexler^m, R. Whiteheadⁱ, W.S. Wilburn^k, A.R. Young^m, B.Zeck^m, M. Zemkeⁱ

Arizona State University, Tempe, AZ 8287-1504
 University of Virginia, Chardnetsville, VA 22904-4714
 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
 ⁴University of Teanesse, Brighton BN19RH, UK
 University of Tennessee at Chattanooga, TN 37403
 ⁴University of Tennessee, At Chattanooga, TN 37403
 ⁴University of Manitoba, Winninge, Manitoba, R3T 2N2, Canada
 ⁴KIT, Universiti Karlsruhe (TH), Kaiserstraße 12, 76131 Karlsruhe, Germany
 ⁴University of South Carolina, Columbia, SC 29208

Main Project Funding:

Los Alamos National Laboratory, Los Alamos, NM 87545 University of Winnipeg, Winnipeg, Manitoka R312519, Canada » North Carolina State University, Raleigh, NC 27695-8202 * Universida Vaicional Autónoma de Mexico, Mexico, D.F. 04510, México * University of Mchigan, Ann Arbor, MI 48109 # Western Kentucky University, Bowling Greene, KY # Saternt Kentucky University, Bichmond, KY 40475 * Neutron Technologies Division, Oak Ridge, National Laboratory, Oak Ridge, TN 37831 * Massechusetts Institute of Technology, Cambridge, MA 02139

Neutron Beta Decay Correlations

- Along with the neutron lifetime, neutron beta decay correlations provide input into standard model → V_{ud} and CKM unitarity (quark mixing)
 - Sensitively tests the standard model! Is there additional physics?
 - Different correlations provide multiple checks with different systematics
- Correlations are all related to a single parameter in the SM: $\lambda = \frac{G_A}{G_V}$

Neutron Beta Decay Correlations

Neutron decay rate: $\Gamma = 1/\tau_n \propto |V_{ud}|^2 G_F^2 (1+3|\lambda|^2)$

CKM Matrix (strength of the flavor-changing weak interaction):

$$\left(egin{array}{c} d' \ s' \ b' \end{array}
ight) = \left(egin{array}{cc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \left(egin{array}{c} d \ s \ b \ b \end{array}
ight)$$

$$\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq p_e E_e (E_0 - E_e)^2 \\ \times \left[1 + \frac{a}{E_e E_\nu} \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + \frac{b}{E_e} \frac{m_e}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(\frac{A \vec{p}_e}{E_e} + \frac{B \vec{p}_\nu}{E_\nu} \right) + \dots \right]$$

where in SM:

$$\begin{aligned} \mathbf{a} &= \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} \qquad \mathbf{A} = -2\frac{|\lambda|^2 + Re(\lambda)}{1 + 3|\lambda|^2} \\ \mathbf{B} &= 2\frac{|\lambda|^2 - Re(\lambda)}{1 + 3|\lambda|^2} \qquad \lambda = \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \text{CKM } V_{ud} \text{)} \end{aligned}$$

$$\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq \rho_e E_e (E_0 - E_e)^2 \times \left[1 + \frac{\frac{Un-\text{polarized}}{\vec{p}_e \cdot \vec{p}_\nu}}{E_e E_\nu} + \frac{b}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu}\right) + \dots\right]$$

where in SM:

$$a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} \qquad A = -2\frac{|\lambda|^2 + Re(\lambda)}{1 + 3|\lambda|^2}$$
$$B = 2\frac{|\lambda|^2 - Re(\lambda)}{1 + 3|\lambda|^2} \qquad \lambda = \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \text{CKM } V_{ud}\text{)}$$

$$\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq \rho_e E_e (E_0 - E_e)^2 \\ \times \left[1 + \left[\frac{\frac{\mathbf{U}_e \cdot \vec{p}_\nu}{\mathbf{p}_e \cdot \vec{p}_\nu} + \mathbf{b} \frac{\mathbf{m}_e}{\mathbf{E}_e} \right] + \langle \vec{\sigma}_n \rangle \cdot \left(\mathbf{A} \frac{\vec{p}_e}{\mathbf{E}_e} + \mathbf{B} \frac{\vec{p}_\nu}{\mathbf{E}_\nu} \right) + \dots \right]$$

where in SM:

$$\begin{array}{|c|c|} \hline \textbf{a} = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} & \textbf{A} = -2\frac{|\lambda|^2 + Re(\lambda)}{1 + 3|\lambda|^2} \\ \hline \textbf{B} = 2\frac{|\lambda|^2 - Re(\lambda)}{1 + 3|\lambda|^2} & \lambda = \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \text{CKM } V_{ud} \text{)} \end{array}$$

Neutron decay rate: $\Gamma = 1/\tau_n \propto |V_{ud}|^2 |g_V|^2 G_F^2 (1+3|\lambda|^2)$

$$\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq \rho_e E_e (E_0 - E_e)^2 \times \left[1 + \frac{\frac{Un-polarized}{\vec{p}_e \cdot \vec{p}_\nu} + b\frac{m_e}{E_e}}{E_e E_\nu} + \langle \vec{\sigma}_n \rangle \cdot \left(A\frac{\vec{p}_e}{E_e} + B\frac{\vec{p}_\nu}{E_\nu}\right) + \dots\right]$$

where in SM:

$$\begin{bmatrix} a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} & A = -2\frac{|\lambda|^2 + Re(\lambda)}{1 + 3|\lambda|^2} \\ B = 2\frac{|\lambda|^2 - Re(\lambda)}{1 + 3|\lambda|^2} & \lambda = \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \text{CKM } V_{ud} \text{)} \end{bmatrix}$$

Neutron decay rate: $\Gamma=1/\tau_n\propto |V_{ud}|^2|g_V|^2G_F^2(1+3|\lambda|^2)$

- Measurements of *a*, *A*, *B* contain different systematics, independent determinations of λ
- Fierz interf. term *b* adds sensitivity to non-SM processes! (*b* = 0 in SM)

EKU J. Fry

Status of λ and V_{ud} in *n* decay: CKM Unitarity?

Status of λ and V_{ud} in *n* decay: CKM Unitarity?

- Independent measurements of λ are necessary in order to entangle V_{ud} from the neutron lifetime, $1/\tau_n \propto |V_{ud}|^2 |g_V|^2 G_F^2 (1+3|\lambda|^2)$
- Nab+pNab \Rightarrow several independent $\sim 0.03\%$ determinations of λ

Nab: How do we determine "a"?

the angular decay rate $w \propto 1 + a\beta\cos\theta_{e\nu}$

• Conservation of momentum in **n** beta decay results in:

 $ec{p}_{
m p} + ec{p}_{
m e} + ec{p}_{
u} = 0 \,, \quad p_{
m p}^2 = p_{
m e}^2 + 2 p_{
m e} p_{
u} \cos heta_{
m e
u} + p_{
u}^2 \,.$

• Neglecting proton recoil energy, $E_e + E_\nu = E_0$, we can see

$$\cos \theta_{e\nu} = \frac{1}{2} \left[\frac{p_{p}^{2} - (2E_{e}^{2} + E_{0}^{2} - 2E_{0}E_{e})}{E_{e}(E_{0} - E_{e})} \right]$$

 $\cos \theta_{e\nu}$ is uniquely determined by measuring E_e and p_p .

The Nab Experiment: Determination of a

Nab: How do we determine "a"?

the angular decay rate $w \propto 1 + a\beta \cos \theta_{e\nu}$

• Conservation of momentum in **n** beta decay results in:

$$ec{p}_{
m p} + ec{p}_{
m e} + ec{p}_{
u} = 0\,, \quad p_{
m p}^2 = p_{
m e}^2 + 2 p_{
m e} p_{
u} \cos heta_{
m e
u} + p_{
u}^2\,.$$

• Neglecting proton recoil energy, $E_e + E_{\nu} = E_0$, we can see

$$\cos \theta_{\rm e\nu} = \frac{1}{2} \left[\frac{p_{\rm p}^2 - (2E_{\rm e}^2 + E_0^2 - 2E_0E_{\rm e})}{E_{\rm e}(E_0 - E_{\rm e})} \right]$$

 $\cos \theta_{e\nu}$ is uniquely determined by measuring E_e and p_p .

Nab: How do we determine "a"?

the angular decay rate $w \propto 1 + a\beta \cos \theta_{e\nu}$

• Conservation of momentum in **n** beta decay results in:

$$ec{p}_{
m p} + ec{p}_{
m e} + ec{p}_{
u} = 0\,, \quad p_{
m p}^2 = p_{
m e}^2 + 2 p_{
m e} p_{
u} \cos heta_{
m e
u} + p_{
u}^2\,.$$

• Neglecting proton recoil energy, $E_e + E_{\nu} = E_0$, we can see

$$\cos \theta_{e\nu} = \frac{1}{2} \left[\frac{p_{p}^{2} - (2E_{e}^{2} + E_{0}^{2} - 2E_{0}E_{e})}{E_{e}(E_{0} - E_{e})} \right]$$

 $\cos \theta_{e\nu}$ is uniquely determined by measuring E_e and p_p .

Neutron beta decay phase space: determination of a

For a given E_e , $\cos \theta_{e\nu}$ is a function of p_p^2 only. Multiple measurements of *a* for each E_e slice

Courtesy Dinko Pocanic

EKU J. Fry

Neutron beta decay phase space: determination of a

Nab spectrometer and measurement

- In order to extract *p_ρ* practically within Nab, we use a long spectrometer that measures *t_ρ* to determine *p_ρ*
- Detect electrons directly, in upper or lower Si detector $\rightarrow E_{e}$
- Detect protons, after acceleration, in upper Si detectors $\rightarrow t_p$ determine p_p

Nab spectrometer and measurement

- In order to extract *p_ρ* practically within Nab, we use a long spectrometer that measures *t_ρ* to determine *p_ρ*
- Detect electrons directly, in upper or lower Si detector $\rightarrow E_{e}$
- Detect protons, after acceleration, in upper Si detectors → t_p determine p_p

A complex magneto-electrostatic apparatus is required to guide particles (nearly) adiabatically to detectors.

Nab spectrometer and measurement

- In order to extract *ρ_ρ* practically within Nab, we use a long spectrometer that measures *t_ρ* to determine *ρ_ρ*
- Detect electrons directly, in upper or lower Si detector $\rightarrow E_{e}$
- Detect protons, after acceleration, in upper Si detectors → t_p determine p_p
- A complex magneto-electrostatic apparatus is required to guide particles (nearly) adiabatically

to detectors.

David Mathews

The Nab Experiment: Nab Spectrometer

Nab spectrometer and measurement: Si detectors

- 15 cm diameter, full thickness: 2 mm
- 127 pixels, dead layer \leq 100 nm
- Energy resolution a few keV, 10 keV proton threshold

Nab spectrometer and measurement: Si detectors

- 15 cm diameter, full thickness: 2 mm
- 127 pixels, dead layer <100 nm ۲
- Energy resolution a few keV, 10 keV proton threshold

Initial protons and radioactive source data at University of Manitoba

.I Frv

The Nab Experiment: Nab Spectrometer

How do we collect low energy protons? Max energy 800 eV

EKU J. Fry

The Nab Experiment: Nab Spectrometer

How do we collect low energy protons? Max energy 800 eV

The Nab Experiment: Nab Spectrometer

How do we collect low energy protons? Max energy 800 eV

The Nab Experiment: Nab Spectrometer

How do we relate proton momentum p_p to time of flight t_p ?

• Proton time of flight in *B* field:

$$t_{\rho} = L \frac{m_{\rho}}{\rho_{\rho}}, \quad \text{but...}$$

How do we relate proton momentum p_p to time of flight t_p ?

• Proton time of flight in *B* field:

$$t_{p} = L \frac{m_{p}}{p_{p}}, \quad \text{but...}$$

L depends on point at birth and the direction of momentum and field!

$$\left.\cos heta_{
m p,0}=\left.rac{ec{
m p}_{
m p0}\cdotec{
m B}}{
m p_{
m p0}B}
ight|_{
m decay\,pt.}$$

• For an adiabatically expanding field,

$$t_{p} = \frac{m_{p}}{p_{p}} \int_{z_{0}}^{t} \frac{dz}{\sqrt{1 - \frac{B(z)}{B_{0}} \sin^{2} \theta_{p,0} + \frac{q(V(z) - V_{0})}{E_{p0}}}}$$

Geant4 simulation:

The Nab Experiment: Nab Spectrometer

Nab systematic uncertainties

Experimental parameter		$(\Delta a/a)_{ ext{SYST}}$
Magnetic field:	curvature at pinch	$5.3 imes 10^{-4}$
	ratio $r_{\rm B}=B_{\rm TOF}/B_0$	2.2×10^{-4}
	ratio $r_{\rm B,DV}=B_{\rm DV}/B_0$	$1.8 imes10^{-4}$
L _{TOF} , length of TOF region		fit parameter
U inhomogeneity:	in decay / filter region	5×10^{-4}
	in TOF region	$2.2 imes 10^{-4}$
Neutron Beam:	position	$1.7 imes10^{-4}$
	width	$2.5 imes10^{-4}$
	Doppler effect	small
	unwanted beam polarization	$1 imes 10^{-4}$
Adiabaticity of proton motion	I	$1 imes 10^{-4}$
Detector effects:	$E_{\rm e}$ calibration	$2 imes 10^{-4}$
	shape of <i>E</i> e response	$4.4 imes 10^{-4}$
	Proton trigger efficiency	$3.4 imes10^{-4}$
	TOF shift (Δt_{ρ})	$3 imes 10^{-4}$
TOF in acceleration region	r _{electrodes} (prelim)	$3 imes 10^{-4}$
electron TOF	analytic correction	small
Accidental coincidences/Background		small
Residual gas	P < 2 $ imes$ 10 ⁻⁹ (prelim)	$3.8 imes10^{-4}$
Sum		1.2×10^{-3}

The Nab Magnet on the FNPB at the SNS

Spectrometer first mounted on the beamline in 2018

Shielding and stairs to upper detector in 2019

Nab Spectrometer Magnet

Magnet has been characterized

- Stability and Hysteresis
- A mode to operate the field has been established
- Modest requirement of <1×10⁻³ relative change in the magnetic field over time

Magnet has been characterized

CRYOGENIC

Magnet has

- Stability and
- A mode to c been establ
- Modest required relative cha field over tir

J. Frv

EKU

ACTIVELY SHIELDED NAB SPECTROMETER THE LARGEST CRYOGEN-FREE SYSTEM IN THE WORLD

- Used to make precision neutron decay measurements and test the weak interaction in the Standard Model of particle physics.
- The results will provide important inputs for astrophysical processes.
- Key measurements will be of the electron-neutrino correlation parameter, and the Fierz interference term in neutron beta decay.

Key Features:

- Detector is housed in a cryogen-free magnet system 7.5 m long and ø1.4 m.
- Magnet cold mass > 1 tonne, cooled by four Gifford McMahon cryocoolers.

Electrode Installation

Electrode Installation

Uniform electrostatic potential is needed to reconstruct p_p from t_p ! knowledge of potential difference between the decay volume and filter to 10 mV \rightarrow fulfilled!

Beam view

Bottom view

EKU J. Fry

Detector Installation

Successful ramp to 30 kV late August!

Detector Installation

HV box and upper detector mount installed installed

Beamline Installation

spin flipper

radioactive source insertion system

get lost tube

Nab Summary

- Nab offers an independent measurement of $\lambda = g_A/g_V$ with competitive precision
- Commissioning underway, systematic studies and production next
- See ML.00002 (D. Mathews), ML.00003 (L, Christie), ML.00004 (M. Gervais) next!

The Nab Collaboration

R. Alarcon^a, A. Atencio^k, S.Baeßler^{b,c} (Project Manager), S. Balascuta, L. Barrón Palosⁿ, T.L. Bailey^m, K. Bassⁱ, N. Birge^{i,k}, A. Blose^f, D. Borissenko^b, M. Bowler^b, J.D. Bowman^c (Co-Spokesperson), L. Broussard^c, A.T. Bryant^b, J. Bryne^d, J.R. Calarco^{c,i}, J. Choi^m, J. Caylorⁱ, L. Christieⁱ, T. Chupp^o, T.V. Cianciolo^c, C.B. Crawford^f, M. Cruzⁱ, X. Ding^b, George Dodson^s, W. Fan^b, W. Farrar^b, N. Fominⁱ, E. Frlež^b, J. Fry^q, M.T. Gericke^g, M. Gervais^f, C. Gilbert^c, F. Glück^h, R. Godriⁱ, F. Gonzalez^c, G.L. Greene^{c,i}, R.K. Grzywaczⁱ, V. Gudkovⁱ, J. Hamblen^s, L. Hawpen^m, C. Hayes^m, C. Hendrus^o, K. Imamⁱ, T. Ito^k, A. Jezghani^f, H. Li^b, M. Makela^k, N. Macsai^g, J. Mammei^g, R. Mammei^l, M. Martinez^a, D.G. Mathews^f, M. McCrea^f, P. McGaughey^k, C.D. McLaughlin^b, J. Mirabal-Martinez^k, P.E. Mueller^c, A. Nelsen^f, I. Novikov^p, D. van Petten^b, S.I. Penttilä^c (On-site Manager), D.E. Perrymanⁱ, J. Pierce^r, D. Počanić^b (Co-Spokesperson), H. Presleyⁱ, Yu Qian^b, J. Ramsey^c, G. Randall^a, G. Riley^{i,k}, K.P. Rykaczewski^c, A. Salas-Bacci^b, S. Samiei^b, A. Saunders^c, E.M. Scottⁱ, T. Shelton^f, S.K. Sjue^k, A. Smith^b, E. Smith^k, E. Stevens^b, L. Tinius^b, J. Thomison^c, J.W. Wexler^m, R. Whiteheadⁱ, W.S. Wilburn^k, A.R. Young^m, B.Zeck^m, M. Zemkeⁱ

Arizona State University, Tempe, AZ 8287-1504
 University of Virginia, Chardnetsville, VA 22904-4714
 Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
 ⁴University of Teanesse, Brighton BN19RH, UK
 University of Tennessee at Chattanooga, TN 37403
 ⁴University of Tennessee, At Chattanooga, TN 37403
 ⁴University of Manitoba, Winninge, Manitoba, R3T 2N2, Canada
 ⁴KIT, Universiti Karlsruhe (TH), Kaiserstraße 12, 76131 Karlsruhe, Germany
 ⁴University of South Carolina, Columbia, SC 29208

Main Project Funding:

Los Alamos National Laboratory, Los Alamos, NM 87545 University of Winnipeg, Winnipeg, Manitoka R312519, Canada » North Carolina State University, Raleigh, NC 27695-8202 * Universida Vaicional Autónoma de Mexico, Mexico, D.F. 04510, México * University of Mchigan, Ann Arbor, MI 48109 # Western Kentucky University, Bowling Greene, KY # Saternt Kentucky University, Bichmond, KY 40475 * Neutron Technologies Division, Oak Ridge, National Laboratory, Oak Ridge, TN 37831 * Massechusetts Institute of Technology, Cambridge, MA 02139

