Updates of the Nab Experiment: A Precise Measurement of Unpolarized Neutron Beta Decay

Jason Fry, for the Nab Collaboration

Eastern Kentucky University

April 15, 2023

APS April Meeting 2023

NSF-PHY 2213411

The Nab collaboration

Nab collaborating institutions:

NC STATE UNIVERSITY

EASTERN KENTUCKY

University of South Carolina, Universität Karlsruhe (TH), Universidad Nacional Autónoma de México, Western Kentucky University

Main project funding:

J. Fry

EKII

The Nab Experiment: n-Deccay Correlations

THE UNIVERSITY OF

Neutron Beta Decay Correlations

- Along with the neutron lifetime, neutron beta decay correlations provide input into standard model → V_{ud} and CKM unitarity (quark mixing)
- Correlations are all related to a single parameter in the SM: $\lambda = \frac{G_A}{G_V}$
 - Neutron decay rate: $\Gamma = 1/\tau_n \propto |V_{ud}|^2 |g_V|^2 G_F^2 (1+3|\lambda|^2)$
 - Sensitively tests the standard model! Is there additional physics?
 - Different correlations provide multiple checks with different systematics

The Nab Exp

EKU J. Frv

$$\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq p_e E_e (E_0 - E_e)^2 \\ \times \left[1 + \frac{a}{E_e E_\nu} \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + \frac{b}{E_e} \frac{m_e}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(\frac{A \vec{p}_e}{E_e} + \frac{B \vec{p}_\nu}{E_\nu} \right) + \dots \right]$$

where in SM:

$$\begin{aligned} \mathbf{a} &= \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} \qquad \mathbf{A} = -2\frac{|\lambda|^2 + Re(\lambda)}{1 + 3|\lambda|^2} \\ \mathbf{B} &= 2\frac{|\lambda|^2 - Re(\lambda)}{1 + 3|\lambda|^2} \qquad \lambda = \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \text{CKM } V_{ud} \text{)} \end{aligned}$$

$$\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq \rho_e E_e (E_0 - E_e)^2 \times \left[1 + \frac{\frac{Un-\text{polarized}}{\vec{p}_e \cdot \vec{p}_\nu}}{E_e E_\nu} + \frac{b}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu}\right) + \dots\right]$$

where in SM:

$$\begin{aligned} a &= \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} \qquad A &= -2\frac{|\lambda|^2 + Re(\lambda)}{1 + 3|\lambda|^2} \\ B &= 2\frac{|\lambda|^2 - Re(\lambda)}{1 + 3|\lambda|^2} \qquad \lambda = \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \text{CKM } V_{ud} \text{)} \end{aligned}$$

$$\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq \rho_e E_e (E_0 - E_e)^2 \\ \times \left[1 + \left[\frac{\frac{\mathbf{U}_e \cdot \vec{p}_\nu}{\mathbf{p}_e \cdot \vec{p}_\nu} + \mathbf{b} \frac{\mathbf{m}_e}{\mathbf{E}_e} \right] + \langle \vec{\sigma}_n \rangle \cdot \left(\mathbf{A} \frac{\vec{p}_e}{\mathbf{E}_e} + \mathbf{B} \frac{\vec{p}_\nu}{\mathbf{E}_\nu} \right) + \dots \right]$$

where in SM:

$$\begin{aligned} \mathbf{a} &= \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} \qquad \mathbf{A} &= -2\frac{|\lambda|^2 + \operatorname{Re}(\lambda)}{1 + 3|\lambda|^2} \\ \mathbf{B} &= 2\frac{|\lambda|^2 - \operatorname{Re}(\lambda)}{1 + 3|\lambda|^2} \qquad \lambda &= \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \operatorname{CKM} V_{ud} \text{)} \end{aligned}$$

Neutron decay rate: $\Gamma = 1/\tau_n \propto |V_{ud}|^2 |g_V|^2 G_F^2 (1+3|\lambda|^2)$

$$\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq \rho_e E_e (E_0 - E_e)^2 \times \left[1 + \left[\frac{u_n - E_e}{\frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e}} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} \right) + \dots \right]$$

where in SM:

$$\begin{bmatrix} a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} & A = -2\frac{|\lambda|^2 + Re(\lambda)}{1 + 3|\lambda|^2} \\ B = 2\frac{|\lambda|^2 - Re(\lambda)}{1 + 3|\lambda|^2} & \lambda = \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \text{CKM } V_{ud} \text{)} \end{bmatrix}$$

Neutron decay rate: $\Gamma = 1/\tau_n \propto |V_{ud}|^2 |g_V|^2 G_F^2 (1+3|\lambda|^2)$

- Measurements of *a*, *A*, *B* contain different systematics, independent determinations of λ
- Fierz interf. term *b* adds sensitivity to non-SM processes! (*b* = 0 in SM)

EKU J. Fry

Status of λ and V_{ud} in *n* decay: CKM Unitarity?

Status of λ and V_{ud} in *n* decay: CKM Unitarity?

- Independent measurements of λ are necessary in order to entangle V_{ud} from the neutron lifetime, $1/\tau_n \propto |V_{ud}|^2 |g_V|^2 G_F^2 (1+3|\lambda|^2)$
- Nab+pNab \Rightarrow independent \sim 0.03% determinations of λ

Nab: How do we determine "a"?

the angular decay rate $w \propto 1 + a\beta \cos \theta_{e\nu}$

• Considering conservation of momentum in **n** beta decay along with neglecting proton recoil energy, $E_e + E_\nu = E_0$, we can arrive at

$$\cos \theta_{\rm e\nu} = \frac{1}{2} \left[\frac{p_{\rm p}^2 - (2E_{\rm e}^2 + E_0^2 - 2E_0E_{\rm e})}{E_{\rm e}(E_0 - E_{\rm e})} \right]$$

 $\cos \theta_{e\nu}$ is uniquely determined by measuring E_e and p_p .

The Nab Experiment: Determination of a

Nab: How do we determine "a"?

the angular decay rate $w \propto 1 + a\beta \cos \theta_{e\nu}$

• Considering conservation of momentum in **n** beta decay along with neglecting proton recoil energy, $E_e + E_\nu = E_0$, we can arrive at

$$\cos heta_{
m e}
u = rac{1}{2} \left[rac{m{
ho}_{
m p}^2 - (2E_{
m e}^2 + E_0^2 - 2E_0E_{
m e})}{E_{
m e}(E_0 - E_{
m e})}
ight]$$

 $\cos \theta_{e\nu}$ is uniquely determined by measuring E_e and p_p .

Nab: How do we determine "a"?

the angular decay rate $w \propto 1 + a\beta \cos \theta_{e\nu}$

• Considering conservation of momentum in **n** beta decay along with neglecting proton recoil energy, $E_e + E_\nu = E_0$, we can arrive at

$$\cos \theta_{\rm e\nu} = \frac{1}{2} \left[\frac{p_{\rm p}^2 - (2E_{\rm e}^2 + E_0^2 - 2E_0E_{\rm e})}{E_{\rm e}(E_0 - E_{\rm e})} \right]$$

 $\cos \theta_{e\nu}$ is uniquely determined by measuring E_e and p_p .

Neutron beta decay phase space: determination of a

For a given E_e , $\cos \theta_{e\nu}$ is a function of p_p^2 only. Multiple measurements of *a* for each E_e slice

Courtesy Dinko Pocanic

EKU J. Fry

Neutron beta decay phase space: determination of a

Nab spectrometer and measurement

- In order to extract *p*_ρ practically within Nab, we use a long spectrometer that measures *t*_ρ to determine *p*_ρ
- Detect electrons directly, in upper or lower Si detector $\rightarrow E_{e}$
- Detect protons, after acceleration, in upper Si detectors $\rightarrow t_p$ determine p_p

Nab spectrometer and measurement

- In order to extract *p*_ρ practically within Nab, we use a long spectrometer that measures *t*_ρ to determine *p*_ρ
- Detect electrons directly, in upper or lower Si detector $\rightarrow E_{e}$
- Detect protons, after acceleration, in upper Si detectors → t_p determine p_p

A complex magneto-electrostatic apparatus is required to guide particles (nearly) adiabatically to detectors.

Nab spectrometer and measurement

- In order to extract *ρ_ρ* practically within Nab, we use a long spectrometer that measures *t_ρ* to determine *ρ_ρ*
- Detect electrons directly, in upper or lower Si detector $\rightarrow E_{e}$
- Detect protons, after acceleration, in upper Si detectors → t_p determine p_p
- A complex magneto-electrostatic apparatus is required to guide particles (nearly) adiabatically

to detectors.

EKU J. Frv

David Mathews

Nab Si detectors: measurement and calibration

- 15 cm diameter, full thickness: 2 mm
- 127 pixels, dead layer \leq 100 nm
- Energy resolution a few keV, 10 keV proton threshold

Nab Si detectors: measurement and calibration

- 15 cm diameter, full thickness: 2 mm
- 127 pixels, dead layer \leq 100 nm
- Energy resolution a few keV, 10 keV proton threshold

Initial protons and radioactive source data at University of Manitoba

Jin Ha Choi, Leendert Hayen, Nick Macsi, David Mathews, Leah Broussard, others!

The Nab Experiment: Nab Updates

Run #657 | Foil #11: Al = 1 $\mu m,$ Mylar = 5.0 μm | χ^2/ndf = 1.2538

How do we collect low energy protons? Max energy 800 eV

The Nab Experiment: Nab Updates

How do we collect low energy protons? Max energy 800 eV

The Nab Experiment: Nab Updates

How do we collect low energy protons? Max energy 800 eV

The Nab Experiment: Nab Updates

Nab Spectrometer Magnet

EKU J. Fry

The Nab Experiment: Nab Updates

The Nab Magnet on the FNPB at the SNS

Spectrometer first mounted on the beamline in 2018

Shielding and stairs to upper detector in 2019

The Nab Experiment: Nab Updates

The **N**ab Ma

CRYOGENIC

Spectrometer first n

ACTIVELY SHIELDED NAB SPECTROMETER THE LARGEST CRYOGEN-FREE SYSTEM IN THE WORLD

- Used to make precision neutron decay measurements and test the weak interaction in the Standard Model of particle physics.
- The results will provide important inputs for astrophysical processes.
- Key measurements will be of the electron-neutrino correlation parameter, and the Fierz interference term in neutron beta decay.

Key Features:

Detector is housed in a cryogen-free magnet system 7.5 m long and ø1.4 m.

Magnet cold mass > 1 tonne, cooled by four Gifford McMahon cryocoolers.

detector in 2019

Nab Si detectors: modeling and simulation

Precision pulse shape simulation for proton detection at the Nab experiment https://arxiv.org/abs/2212.03438

Leendert Hayen,^{1, 2, *} Jin Ha Choi,^{1, 2} Dustin Combs,^{1, 2} R.J. Taylor,^{1, 2} Stefan Baeßler,^{3, 4} Noah Birge,⁵ Leah J. Broussard,^{6, †} Christopher B. Crawford,⁶ Nadia Fomin,⁵ Michael Gericke,⁷ Francisco Gonzalez,³ Aaron Jezghani,⁶ Nick Macsai,⁷ Mark Makela,⁸ David G. Mathews,⁶ Russell Mammei,⁹ Mark McCrea,⁹ August Mendelsohn,⁷ Austin Nelsen,⁶ Grant Riley,⁸ Tom Shelton,⁶ Sky Sjue,⁸ Erick Smith,⁸ Albert R. Young,^{1, 2} and Bryan Zeck^{1, 2, 8}

The Nab Experiment: Nab Updates

Nab Si detectors: Calibration Work at Manitoba

- A low energy (25 keV 35 keV) proton source is used for detector testing
- An electro-static steerer directs proton trajectories onto pixel targets.
- A Cd-109 and Sn-113 calibration source package are used for energy calibration.
- Average waveform rise times imply radially decreasing density
 - Less impurities lead to weaker electric field for a fixed detector bias.

125 150 175

Sn113 and Cd109

calibration source

The Nab Experiment: Nab Updates

250 275 300

Bias voltage [V]

N=1.0e+10

N=2.0e+10

N=3.0e+10

N=4.0e+10

Nab Experimental Detector Timing Calibrations

In-situ timing (EKU, ORNL)

Ex-situ test stand (ORNL)

The Nab Experiment: Nab Updates

Updated Experimental schedule

- Early this year, magnet wasn't cooling as expected cold heads serviced, x-ray radiography performed to "see" possible problematic features
- Manufacturer visited, identified possible places in which there could be a touch (loose tie rods, loose super insulation, or loose magnet coil cladding connects coils to warmer parts) or a thermal link that was not intended.

Cooling the magnet now to verify the fix and hopefully a full cooldown later in the summer followed by data taking

• After cooldown, plan to take data this year through 2025

EKU J. Fry

The Nab Experiment: Nab Updates

Outlook - proposed pNab

- Place polarizer and SF in the Nab setup to measure the beta asymmetry A to better than $\Delta A/A = 10^{-3}$, competitive with other experiments
- Synergistic with Nab, in that the systematic uncertainty requirements in the detector characterization in Nab are sufficient for pNab.
- Different set of systematic errors! Well motivated by the CKM picture at the moment

Outlook - proposed pNab

- Place polarizer and SF in the Nab setup to measure the beta asymmetry A to better than $\Delta A/A = 10^{-3}$, competitive with other experiments
- Synergistic with Nab, in that the systematic uncertainty requirements in the detector characterization in Nab are sufficient for pNab.
- Different set of systematic errors! Well motivated by the CKM picture at the moment

Nab Summary

- Nab offers an independent measurement of $\lambda = g_A/g_V$ with competitive precision, approaching superallowed decays
- Many collaboration efforts underway to pin down remaining systematic effects
- Calibrations underway, data taking and systematic studies through 2025

The Nab collaboration

Nab collaborating institutions:

UNIVERSITY OF

MICHIGAN

EASTERN KENTUCKY

EKU

University of South Carolina, Universität Karlsruhe (TH), Universidad Nacional Autónoma de México, Western Kentucky University

Main project funding:

J. Frv

EKII

The Nab Experiment: Summary

THE UNIVERSITY OF

Extras

How do we relate proton momentum p_p to time of flight t_p ?

• Proton time of flight in *B* field:

$$t_{\rho} = L \frac{m_{\rho}}{\rho_{\rho}}, \quad \text{but...}$$

How do we relate proton momentum p_p to time of flight t_p ?

• Proton time of flight in *B* field:

$$t_p = L \frac{m_p}{p_p}, \quad \text{but...}$$

L depends on point at birth and the direction of momentum and field!

$$\left.\cos heta_{
m p,0}=\left.rac{ec{
m p}_{
m p0}\cdotec{
m B}}{
m p_{
m p0}B}
ight|_{
m decay\,pt.}$$

• For an adiabatically expanding field,

$$t_{p} = \frac{m_{p}}{p_{p}} \int_{z_{0}}^{I} \frac{dz}{\sqrt{1 - \frac{B(z)}{B_{0}} \sin^{2} \theta_{p,0} + \frac{q(V(z) - V_{0})}{E_{p0}}}}$$

Geant4 simulation:

One of our Analysis Strategies

- Expand the integral into Taylor series parameters neglecting \vec{E} contributions, and fit to these parameters using simulation and data
- put in corrections for \vec{E} contributions in fitting parameters
- Knowing the field is critical to determining t_p and thus a

$$\begin{split} \rho_p &= \frac{m_p}{t_p} \int \frac{dz}{\sqrt{1 - \frac{B(z)}{B_0} sin^2(\theta_0)}} \\ &= \frac{m_p}{t_p} \bigg[L - \eta \ln \frac{\cos(\theta_0) - \cos(\theta_0)_{min}}{1 - \cos(\theta_0)_{min}} \\ &+ \alpha (1 - \cos(\theta_0)) + \beta (1 - \cos(\theta_0))^2 + \gamma (1 - \cos(\theta_0))^3 \bigg] \end{split}$$

One of our Analysis Strategies

- Checked using detailed **GEANT4** simulations
- Use central part of trapeziums to extract a

EKU J. Fry

The Nab Experiment: Extras

Nab systematic uncertainties

Experimental parameter		$(\Delta a/a)_{ m SYST}$
Magnetic field:	curvature at pinch	$5.3 imes 10^{-4}$
	ratio $r_{\rm B}=B_{\rm TOF}/B_0$	2.2×10^{-4}
	ratio $r_{\rm B,DV}=B_{\rm DV}/B_0$	$1.8 imes 10^{-4}$
L _{TOF} , length of TOF region		fit parameter
U inhomogeneity:	in decay / filter region	5×10^{-4}
	in TOF region	2.2×10^{-4}
Neutron Beam:	position	$1.7 imes 10^{-4}$
	width	$2.5 imes10^{-4}$
	Doppler effect	small
	unwanted beam polarization	$1 imes 10^{-4}$
Adiabaticity of proton motior	1	$1 imes 10^{-4}$
Detector effects:	$E_{\rm e}$ calibration	2×10^{-4}
	shape of <i>E</i> e response	4.4×10^{-4}
	Proton trigger efficiency	$3.4 imes10^{-4}$
	TOF shift (Δt_{ρ})	$3 imes 10^{-4}$
TOF in acceleration region	r _{electrodes} (prelim)	$3 imes 10^{-4}$
electron TOF	analytic correction	small
Accidental coincidences/Background		small
Residual gas	$P < 2 imes 10^{-9}$ (prelim)	$3.8 imes 10^{-4}$
Sum		$1.2 imes 10^{-3}$

Nab spectrometer and measurement: rates and timing

- The Nab spectrometer designed to measure both the electron energy *E*_e and proton the proton TOF (*t*_p).
- At 1.4 MW SNS beam power there will be ~1600 decays/s, or ~200 p/s in upper detector.

The Nab Experiment: Systematic Uncertainties

Detector Cooling updates

Electrode Installation

The Nab Experiment: Systematic Uncertainties

Electrode Installation

Uniform electrostatic potential is needed to reconstruct p_p from t_p ! knowledge of potential difference between the decay volume and filter to 10 mV \rightarrow fulfilled!

Beam view

Bottom view

EKU J. Fry

PRELIMINARY The Nab Experiment: Systematic Uncertainties

Activities in the next couple years

- beam polarization
- more detector characterization with radioactive sources
- Electron energy response (tail, $\Delta E \sim$ few 100 eV),
- proton detection efficiency (variation < 100 ppm/keV) ,
- timing response ($\Delta t_p \Delta t_e < 0.3 \text{ ns}$)
- Parallel work on cooling system upgrade, two Faraday cages, Electronics redesign, 3rd mount

