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Neutron Beta Decay Correlations

o —

@ Along with the neutron lifetime, neutron beta decay correlations provide
input into standard model — V4 and CKM unitarity (quark mixing)

@ Correlations are all related to a single parameter in the SM: \ = %C
® Neutron decay rate: [ = 1/7, o | V.|?|gv]|?GE(1 + 3|A\[?)

® Sensitively tests the standard model! Is there additional physics?

® Different correlations provide multiple checks with different systematics
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Free neutron beta decay rate

dw 2
— ~p.EsEy— E
JE.d0.dq, - PeFelFo— Ee)
Pe - Py Me Pe Pv
1 b— A= +B
ta et Ee+< Fn) - <Ee+ E,,>+ ]
where in SM:
1= AP Ao A2+ Re()\)
1 43|)2 N 1+ 3|A]2
A2 — Re()) Ga ,
=2t TV A = — (with 7, = CKM
14 3[\]2 Gv (with 7 )
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Free neutron beta decay rate
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Free neutron beta decay rate

dw 2
— ~p.E.(E — E
OE,dQ.d%), Pe e( 0 e) .
Un- polarlzed
Pe - B Pe Pv
1 — A—+ B
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where in SM:
1= AP Ao A2+ Re()\)
1+ 302 N 1+ 3|A]2
[A[? — Re())

Ga
A= (with 7, = CKM V)

=2
14+ 3|72 Gy

Neutron decay rate: I = 1/7, o | V,4[?|gv[2GE(1 + 3|\[?)
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Free neutron beta decay rate

aw 2
—————— ~ pE(Ey — Ee)
dE.d2.d2, Un- polarized
pe pl/ pe pV
’ e A= B
+aEE +bEe+< > <Ee+ E,,>+ :|
where in SM:
DR, DR+
IR B R R;
[A® = Re(A)

Ga
A= (with 7, = CKM V)

=2
14+ 3|72 Gy

Neutron decay rate: I = 1/7, o | V,4[?|gv[2GE(1 + 3|\[?)

@ Measurements of a, A, B contain different systematics, independent
determinations of A
@ Fierz interf. term b adds sensitivity to non-SM processes! (b = 0 in SM)
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Status of A and V4 in n decay: CKM Unitarity?

@ Data + theoretical radiative
corrections generate some
tension with CKM Unitarity

0.975

@ New physics at the TeV level?
AN/X=3x10"*and7,=0.3s
for neutrons to competitively test>09

CKM Y === CKM unitarity
VVVVVVVVVVVVV = 0" 0" Transitions
a 0.965p+" i A (A) PERKEOIII+UCNA
. - A (a) a
o Nab will measure — ~ 10~ [« e N e
a - e e Tpeam
and Ab ~ 3 x 103 L R

0
0'9?.29 -128 -1.27 -1.26
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Status of A and V4 in n decay: CKM Unitarity?

EKU

Data + theoretical radiative 008

corrections generate some [ o a0

tension with CKM Unitarity L o
0.975

New physics at the TeV level?
AN/X=3x10"*and7,=0.3s
for neutrons to competitively test>09

vo\\‘\\\\‘\\\\‘\\\\

CKM """"" ] C’KN’\ unitari‘|y
a 0.965 — (A] (2) EEEQTE“Z;MCNA
Nab will measure — ~ 1073 e
a B = Ty
and Ab ~ 3 x 103 N AN B
'—?.29 -1.28 -1.27 -1.26
A:gA/gv
Independent measurements of A are necessary in order to entangle

from the neutron lifetime, 1/7, o< | V,4|?|gv|?G2(1 + 3|\|?)

Nab+pNab = independent ~ 0.03% determinations of A
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Nab: How do we determine “a”?

Q® —_ okd
p . 0

ev

n
O,

the angular decay rate w o< 1 + afcos s,
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Nab: How do we determine “a’?
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the angular decay rate w o< 1 + afcos g,

@ Considering conservation of momentum in n beta decay along with
neglecting proton recoil energy, E. + E, = Ey, we can arrive at
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Nab: How do we determine “a’?

.‘\ Oe_
P . 6

ev

n

Oy

e

the angular decay rate w o< 1 + afcos g,

@ Considering conservation of momentum in n beta decay along with
neglecting proton recoil energy, E. + E, = Ey, we can arrive at

1| P5 — (2E% + E§ — 2E0E,)

Oop = ~
cosTer =5 Eo(Eo — E2)

cos 0, is uniquely determined by measuring E. and py. ‘
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Neutron beta decay phase space: determination of a

— —r— ;
1.5 | proton phase space

‘ \ Yield (arb. units)
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PR 1
0.4 0.6 0.8
E. (MeV)

For a given Ee, cos g, is a function of pg only.
Multiple measurements of a for each E; slice

Courtesy Dinko Pocanic
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Neutron beta decay phase space: determination of a
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Nab spectrometer and measurement

@ In order to extract p, practically within
Nab, we use a long spectrometer that
measures {, to determine p,

@ Detect electrons directly, in
upper or lower Si detector — E,

@ Detect protons, after acceleration, in
upper Si detectors — 1, determine pp
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Nab spectrometer and measurement

@ In order to extract p, practically within
Nab, we use a long spectrometer that
measures {, to determine p,

@ Detect electrons directly, in
upper or lower Si detector — E,

@ Detect protons, after acceleration, in
upper Si detectors — 1, determine pp

A complex magneto-electrostatic apparatus is

required to guide particles (nearly) adiabatically
to detectors.
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Nab spectrometer and measurement

@ In order to extract p, practically within g
Nab, we use a long spectrometer that ‘;L i

measures tp to determine Pp

® (kV)

@ Detect electrons directly, in
upper or lower Si detector — E,

Flux
Return

@ Detect protons, after acceleration, in Superconducting
upper Si detectors — 1, determine pp

TOF Region

Magnetic
Filter

A complex magneto-electrostatic apparatus is Main Electrode
Neutrons,

required to guide particles (nearly) adiabatically ——_ >

to detectors. :

HV Cage

m o~
Bz (T)
ﬂ DAQ Fiber
Isolation Transformer
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Nab Si detectors: measurement and calibration

@ 15cm diameter, full thickness: 2 mm

Ceramic
Electrode HV break

@ 127 pixels, dead layer <100 nm

@ Energy resolution a few keV, 10 keV
proton threshold

Amplifier
FET assembly
assembly
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Nab Si detectors: measurement and calibration

@ 15cm diameter, full thickness: 2 mm

@ 127 pixels, dead layer <100 nm

@ Energy resolution a few keV, 10 keV

proton threshold

G10

Ceramic
Electrode HV break
shell -

Amplifier
FET assembly

assembly

Initial protons and radioactive source data at University of Manitoba
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Jin Ha Choi, Leendert Hayen, Nick Macsi, David Mathews, Leah Broussard, others!
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How do we collect low energy protons? Max energy 800 eV

A strong magnetic filter accepts
protons with a narrow upward
cone cos(fo,min) > 0.7

Y

P~
agrjetic Field

Adiabatic
conversion

Proton Trajectory

N

sin(f,5) x VB

=
>

?)
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Si detector

U, (upper HV)

|

-

~4m flightpath skipped

cam
~1m flightpath skipped

Segme 4= "_J
Si detedtar
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How do we collect low energy protons? Max energy 800 eV

A strong magnetic filter accepts
protons with a narrow upward

cone cos(fo,min) > 0.7
pl "4
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conversion

Proton Trajectory

o sin(f,5) VB

= longitudinalize p early,
followed by a long drift path!

EKU J. Fry
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Nab Spectrometer Magnet
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ACTIVELY SHIELDED NAB SPECTROMETER
THE LARGEST CRYOGEN-FREE SYSTEM IN THE WORLD

@ Used to make precision neutron decay measurements and test
the weak interaction in the Standard Model of particle physics.

@ The results will provide important inputs for astrophysical
processes.

© Key will be of the el tri i

parameter, and the Fierz interference term in neutron beta decay.

Key Features:
© Detector is housed in a cryogen-free magnet
system 7.5 m long and 01.4 m.

© Magnet cold mass > 1 tonne, cooled by
four Gifford McMahon cryocoolers.

B2, Field along magnet axis

Spectrometer first n detector in 2019

EKU J. Fry
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Nab Si detectors: modeling and simulation

Precision pulse shape simulation for proton detection at the Nab experiment

https://arxiv.org/abs/2212.03438

Leendert Hayen,™2:* Jin Ha Choi,’*? Dustin Combs,2 R.J. Taylor,? Stefan Baefler,** Noah Birge,® Leah J.
Broussard,% ! Christopher B. Crawford,® Nadia Fomin,® Michael Gericke,” Francisco Gonzalez,> Aaron Jezghani,’
Nick Macsai,” Mark Makela,® David G. Mathews,® Russell Mammei,® Mark McCrea,® August Mendelsohn,” Austin
Nelsen,% Grant Riley,® Tom Shelton,® Sky Sjue,® Erick Smith,® Albert R. Young,? and Bryan Zeck %8

Cormmor Tunction
Commoned o, alfER

Perial Picls

e
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i Hond
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Bind

p-spray p-spray  SiO2 passivatlion layer
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t

0.100

p’ junction window
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—e

— b+

°
o -5 w®
Xlum 5 10

FuII realistic detector model with
Bulk profile and Junction and contact implantation.

Time [ns]

e Charge carrier transport with pixel weighting potential, electric field

profiles, impurity density.

. Carrier transport simulation with continuous interaction, drift and

diffusion.

. grelgéion pulse shape simulation from geant4 and SRIM deposit ranges,

o Detailed detector impurity density models

The Nab Experiment: Nab Updates
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Nab Si detectors: Calibration Work at Manitoba

Calipration Source Axis
La—of Rotation

Sn113 and Cd109
calibration source

EKU J. Fry

e Alow energy (25 keV - 35 keV) proton source is used for

detector testing
e An electro-static steerer directs proton trajectories onto

pixel targets.

e A Cd-109 and Sn-113 calibration source package are
used for energy calibration.

e Average waveform rise times imply radially decreasing

density

o Less impurities lead to weaker electric field for a
fixed detector bias.

Average 10-90 Rise Time for Radially Distributed Pixels

14

August Mendelsohn
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Nab Experimental Detector Timing Calibrations

In-situ timing (EKU, ORNL) Ex-situ test stand (ORNL)

Si detecor

radioactive

e ~5m
source

a

timing
detector
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Updated Experimental schedule

@ Early this year, magnet wasn’t cooling as expected - cold heads serviced,
x-ray radiography performed to "see" possible problematic features

@ Manufacturer visited, identified possible places in which there could be a
touch (loose tie rods, loose super insulation, or loose magnet coil cladding
connects coils to warmer parts) or a thermal link that was not intended.

Radiation shield

——— Cold heads

outer coils

inner coils

Bore tube
vacuum
chamber 3 Ny
wall ~ BN > s

Radial tie rods

Cooling the magnet now to verify the fix and hopefully a full cooldown later in
the summer followed by data taking
@ After cooldown, plan to take data this year through 2025
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Outlook - proposed pNab

e
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(low field)
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: 8 ee+] kV

l/\\i
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Y WO W .o kv
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U e 30kV

Stefan Baessler
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@ Place polarizer and SF in

the Nab setup to measure
the beta asymmetry A to
better than AA/A = 103,
competitive with other
experiments

Synergistic with Nab, in
that the systematic
uncertainty requirements
in the detector
characterization in Nab
are sufficient for pNab.

Different set of systematic
errors! Well motivated by
the CKM picture at the

moment
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Outlook -

proposed pNab

0.6
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@ Place polarizer and SF in

the Nab setup to measure
the beta asymmetry A to
better than AA/A = 103,
competitive with other
experiments

Synergistic with Nab, in
that the systematic
uncertainty requirements
in the detector
characterization in Nab
are sufficient for pNab.

Different set of systematic
errors! Well motivated by
the CKM picture at the

moment
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Nab Summary

@ Nab offers an independent
measurement of A = g4/gy with
competitive precision, approaching
superallowed decays

@ Many collaboration efforts
underway to pin down remaining
systematic effects

@ Calibrations underway, data taking
and systematic studies through
2025
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Extras

EKU Fry The Nab Experiment: Exiras 19/ 19



How do we relate proton momentum p; to time of flight #,?

@ Proton time of flight in B field:

m
ty=L—" but..
Pp
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How do we relate proton momentum p; to time of flight #,?

@ Proton time of flight in B field:

m
ty=L—" but..
Pp

L depends on point at birth and the

direction of momentum and field!

Boo - B
PpoB

@ For an adiabatically expanding field,

cos pg =

decay pt.

/ dz

Epo

EKU J. Fry The Nab Experiment: Exiras

Geant4 simulation:

‘\ Detector

Proton

Magnetic Filter— Decay

Electron
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One of our Analysis Strategies

@ Expand the integral into Taylor series parameters neglecting E
contributions, and fit to these parameters using simulation and data

@ put in corrections for E contributions in fitting parameters

@ Knowing the field is critical to determining t, and thus a

by — mp / az
p = —
tp \/1 — 7Bé§) sin2(90)

_mf, Jin cos(o) — cos(0o) i
t 1 — cos(6)

P min

+ a(1 — cos(fy)) + B(1 — cos(6p))? + (1 — cos(6p))®
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One of our Analysis Strategies

: [ ﬁ;‘ E{100= ke V : E. 200 ke V : -'ﬁ...."‘.“
\ 1 |
: 3 \ ! . |
\ 1 L..| @ Checked using detailed
| 1 . .
1y GEANT4 simulations
0.001 0.003 0.005 0.001 0.003 0.005 0.001 0.003 0.005
E. =300 D)ke V E. =500 Mke v - . = 600: =Tk’
B i S S S L
= I’ '1\ "™ 1 @ Use central part of
3 T I K lI \ trapeziums to extract a
l\ “T | = ] (slope!).
[ \
* o Py
0.001 0.003 0.005 0.001 I;;g)l%uszl 0.005 0.001 0.003 0.005
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Tk 1 Bgie,)
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B ? <L ~in cos(6o) — cos(6o)

= 1= cos(dy) mn a1 — cos(6o)) + B(1 — cos(6))? + (1 — cos(6o))

P min
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Nab systematic uncertainties

Experimental parameter

(Aa/a)syst

ratio rs = Bror/Bo 22x107*
ratio rspv = Bov/Bo 1.8 x 107*
Ltor, length of TOF region fit parameter
U inhomogeneity: in decay / filter region 5x 107"
in TOF region 22x10°*
Neutron Beam: position 1.7 x107*
width 25x107*
Doppler effect small
unwanted beam polarization 1x107*
Adiabaticity of proton motion 1x107*
Detector effects: E. calibration 2x107*
shape of E; response 4.4 x10*
Proton trigger efficiency 3.4 x107*
TOF shift (At) 3x107*
TOF in acceleration region  rejectrodes (Prelim) 3x107*
electron TOF analytic correction small
Accidental coincidences/Background small
Residual gas P < 2 x 107 (prelim) 3.8x107*
Sum 1.2x 1072

EKU J. Fry
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Nab spectrometer and measurement: rates and timing

@ The Nab spectrometer designed to DAQFiber g (1)
measure both the electron energy E; and

roton the proton TOF (t,). _l—. )
p p (p) Detector- ! I L<

@ At 1.4 MW SNS beam power there will be

H Flux
~1600 decays/s, or ~200 p/s in upper Return
c
deteCto r. Superconducting ‘E-;
& TOF vs p TOF for all coincident protons ReTOFPTOF Magnet <
Entries 7365216 S
Meanx 2055
14 Meeny 5.649 o
RMSx 6201 B
RMSy 09784
12 Main Electrode Magnetic
Neutrons, Filter
10 10° —_—
7 ExB Electrodes;
T 8
!9 10°
© 6

=
0
-200

15 20 25 30 35 40
proton TOF [us]
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Detector Cooling updates

Helium circulating
detector cooling
system update:

Upper mount
FET min temp
reached ~140K

Emperature (K)

Lower mount
FET min temp
reached ~210K
(Room temp
magnet)

Emperature (K)

EKU J. Fry

./ ,a:.m
L

each (right).

Previously, one cold head serviced
both loops (upper and lower) (left).
Now working on splitting the system
to have a designated cold head for

8

8

— Flow Rate.

&
Flow Rate (SLPM)

— Helium Leaving HX1

—— Surfboard above HX1
Helium entering HX1

— Surfboard above HX2
Upper FET

E

00 10 20 20 X0

— Flow Rate

Flow Rate (SLPM)

— Helium Leaving HX1

» — Surfboard above HX1

Hellum entering HX1

— Surfboard above HX2
Lower FET

© ) ® 100 120

Time (Hours)
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The first cold
head is

transitioned to
servicing only
one loop (left).

The stand for
the second cold

head is
installed (right).
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Electrode Installation

DAQ Fiber o (kV)
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Electrode Installation
Beg

~

m view

Uniform electrostatic potential is
needed to reconstruct p, from ;!
knowledge of potential difference
between the decay volume and filter to
10 mV — fulfilled!

exv .., PRELIMINARY,
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Activities in the next couple years

@ beam polarization

@ more detector characterization with radioactive sources
@ Electron energy response (tail, AE ~ few 100 eV),

@ proton detection efficiency (variation < 100 ppm/keV) ,
@ timing response (At, Ats < 0.3 ns)

@ Parallel work on cooling system upgrade, two Faraday cages, Electronics
redesign, 3rd mount
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