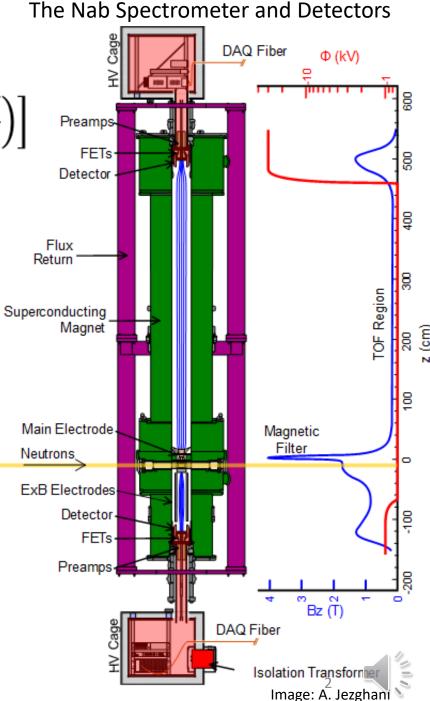
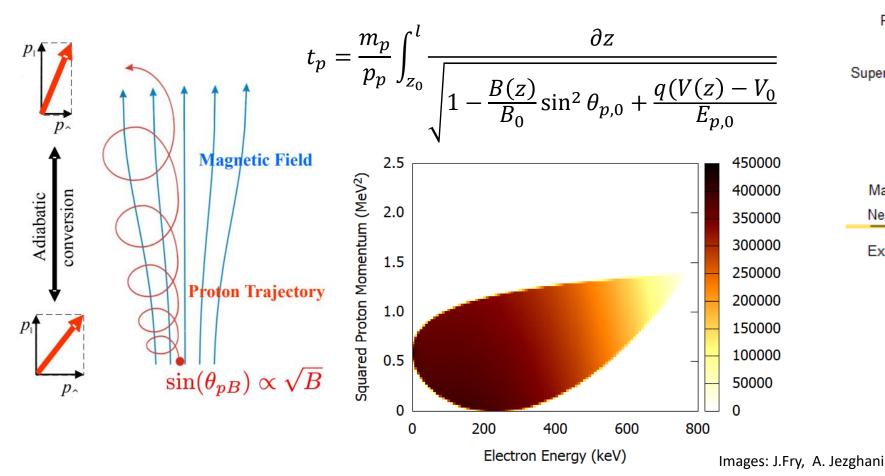
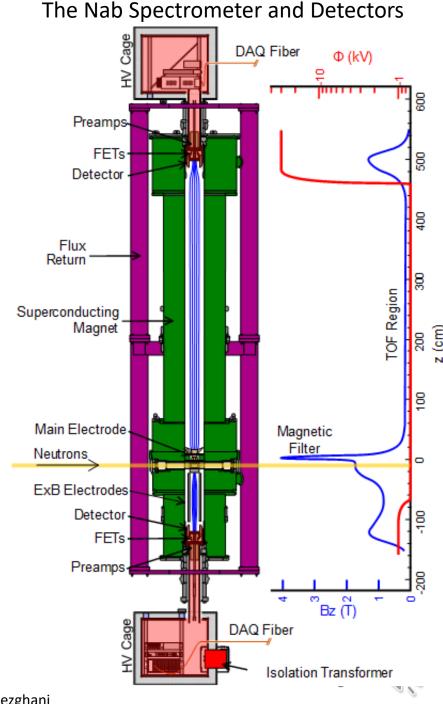

A Precision Measurement of Zero Beam Polarization for the Nab Experiment at the SNS

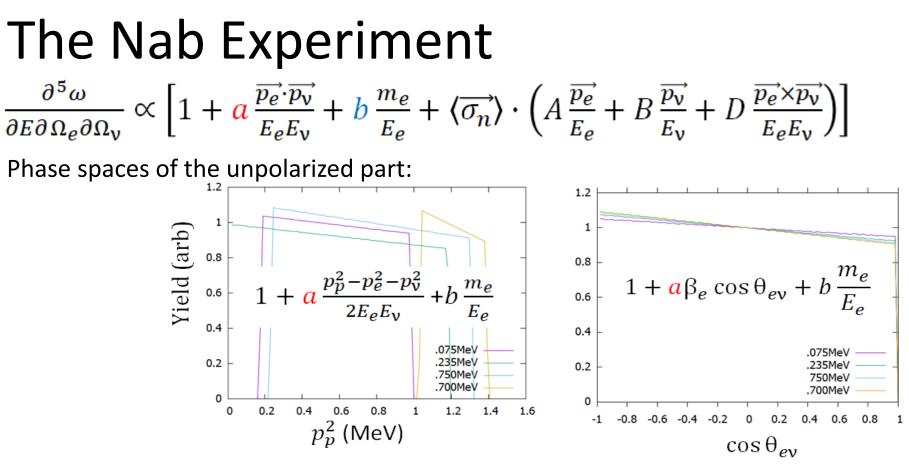

Chelsea Hendrus For the Nab Collaboration April 11, 2022

These parameters contribute to our understanding of Standard Model puzzles

- CKM Unitarity, Quark Mixing V_{ud}
- $\lambda = \frac{G_A}{G_V}$
- Neutron Lifetime


A measurement of **b** also helps probe Non-Standard Model Physics




The Nab Experiment

The Measurement:

- Measure Electron energy via lower silicon detectors
- Measure proton momentum via Time-of-Flight through Spectrometer field

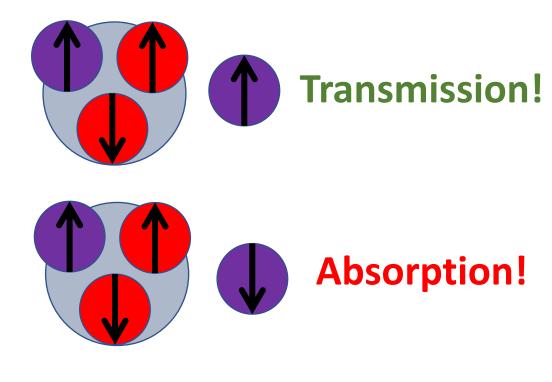
Neglect time reversal terms, and average the polarized terms over the events the detector sees we get:

$$\langle \overrightarrow{\sigma_n} \rangle \cdot \left(A \frac{\overrightarrow{p_e}}{E_e} + B \frac{\overrightarrow{p_v}}{E_v} + D \frac{\overrightarrow{p_e} \times \overrightarrow{p_e}}{E_e E_v} \right) \longrightarrow |\langle \sigma_n \rangle| (A \beta_e \langle \cos \theta_e \rangle + B \langle \cos \theta_e \rangle \cos \theta_e \rangle$$

To Meet Our Experimental Goal we must verify that that the beam polarization is:

$$\frac{\Delta a}{a} = \frac{B\langle \cos\theta_e \rangle |\langle\sigma_n \rangle|}{\beta_e a} \approx 10^{-4} \qquad |\langle\sigma_n \rangle| < 2 \times 10^{-5}$$

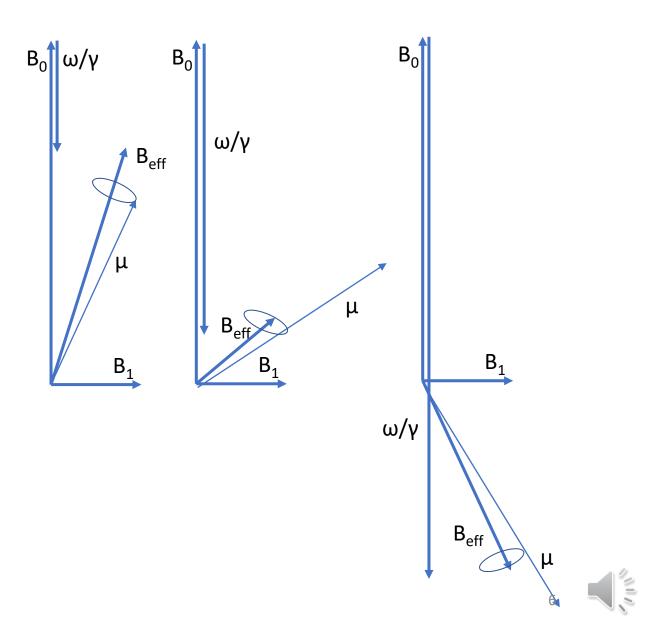
Neutron Polarizer


The Cross section between ³He and neutrons is spin dependent They only interact in the singlet state!

Transmission of Neutrons through Unpolarized ³He

 $T_0 = N e^{-nl\sigma_0 \frac{\lambda}{\lambda_0}}$

Transmission of Polarized Neutrons through Polarized ³He


$$T = Ne^{-nl\sigma_0\frac{\lambda}{\lambda_0}} \left(\cosh\left(nl\sigma_0\frac{\lambda}{\lambda_0}P_{He}\right) + P_n\sinh\left(nl\sigma_0\frac{\lambda}{\lambda_0}P_{He}\right)\right)$$

Adiabatic Fast Passage (AFP) Spin Flipping Flipping the spin using a resonant field

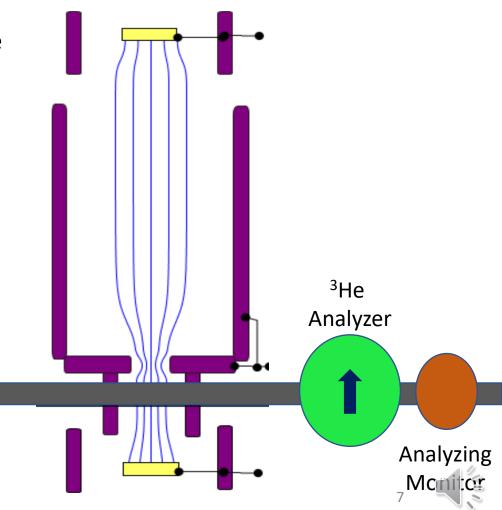
- B_0 is a static field in the lab frame, B_1 oscillates with some frequency, ω .
- In the rotating frame, the magnetic moment sees an effective B_{eff} , and B_0 , modulated by the larmor frequency and ω .
- Change in B_{eff} must be slower than the Larmor Precession Frequency

Measuring A Polarization

Normalizing

Monitor

If we flip a spin, that spin gets multiplied a factor that depends of the efficiency of the flipping device


AFP Neutron Spin Flipper

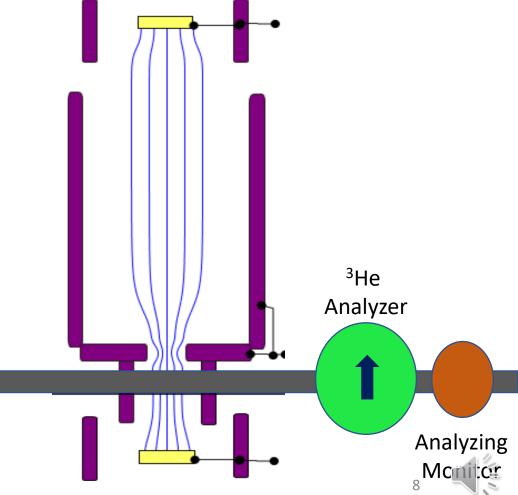
 $P \to (1-2\varepsilon)P$

Then, we can take transmission ratios and compare them to measure the neutron polarization

We need 3 measurements to get a Polarization:

- Neutron Beam through Unpolarized ³He –T₀
- Neutron Beam through Polarized ³He T₊
- Neutron Beam through Polarized ³He, flipping something T₋

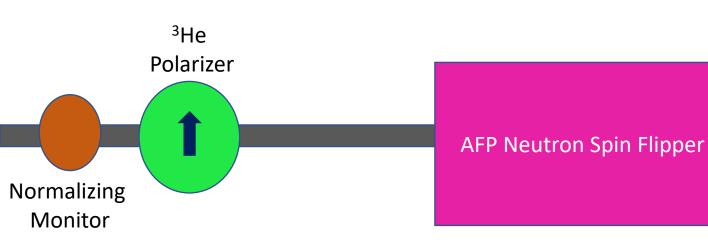
Measuring A Polarization by Flipping Neutrons

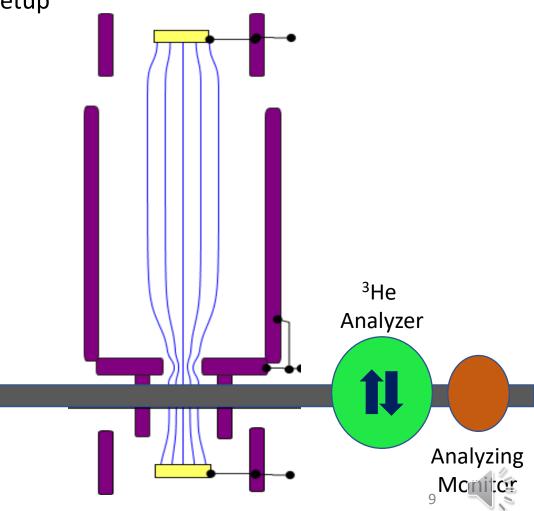

Normalizing

Monitor

If we assume that our ³He polarization is the same between measurements, we can compare ratios of transmission measurements

$$R_{+} = \frac{T_{+}}{T_{0}} \quad R_{-} = \frac{T_{-}}{T_{0}}$$
$$P_{n} = \frac{R_{+} - R_{-}}{\sqrt{[(2\varepsilon_{n} - 1)R_{+} + R_{-}]^{2} - 4\varepsilon_{n}^{2}}}$$

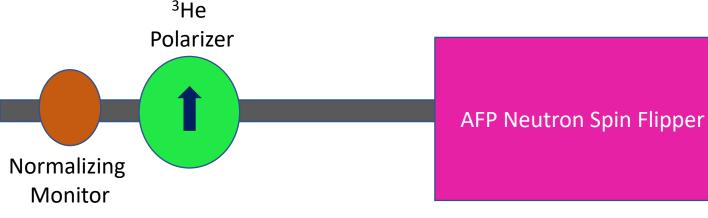

AFP Neutron Spin Flipper

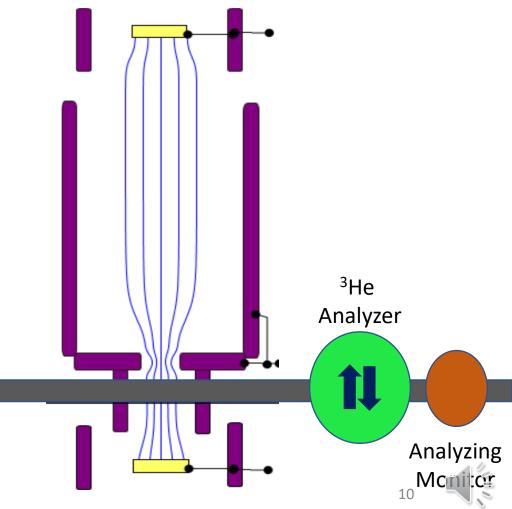


Measuring our Spin Flipper Efficiency

We need to understand our Spin Flipper Efficiency. We can't do that on a beam where we expect a small polarization, so we will add a 3He Polarizer to our setup

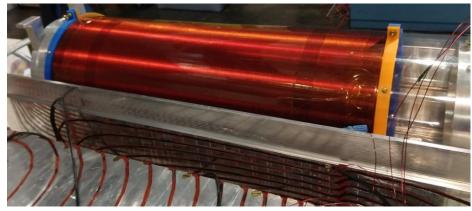
We will need 4 measurements this time:
Beam through polarized ³He – T₊₊
Flipped beam through polarized ³He – T₋₊
Beam through polarized, flipped ³He T₊₋
Flipped beam through polarized, flipped ³He T₋₋

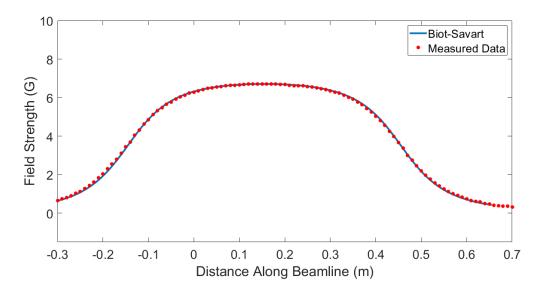



Measuring our Spin Flipper Efficiency

If we assume that the polarization of the polarizer and the analyzer are the same between measurements, we can take transmission ratios

$$\varepsilon_n = \frac{1}{2} \left(1 - \frac{\frac{T_{--} - T_{-+}}{T_{--} + T_{-+}}}{\frac{T_{+-} - T_{++}}{T_{+-} + T_{++}}} \right)$$

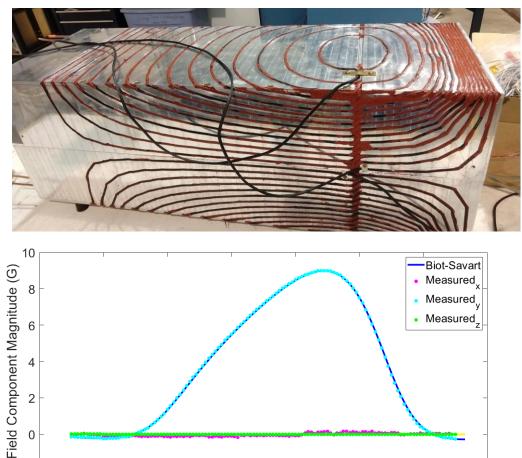

When we understand our Spin Flipper Efficiency, we can run Nab in "Spin Flipper Mode," where we run the Spin Flipper half-time during data collection, to cancel out an average polarization



An Adiabatic Fast Passage Spin Flipper

RF Solenoid

Static Gradient Field


-2 -0.6

-0.4

-0.2

0

Distance Along Beamline (cm)

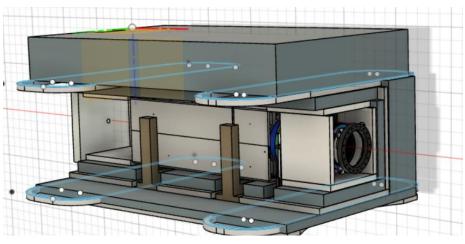
0.2

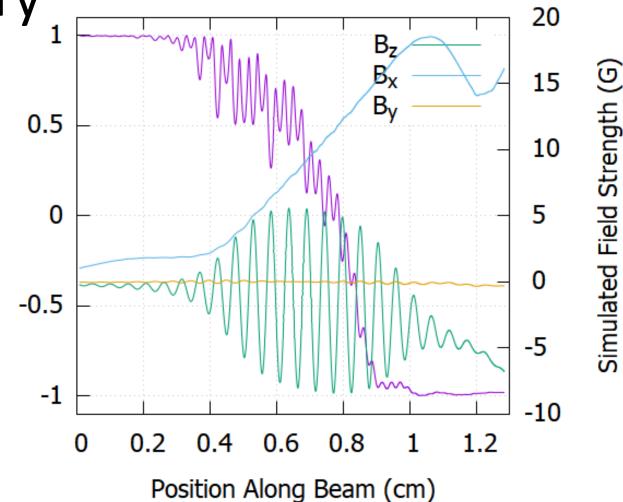
0.4

0.6

0.8

11


8

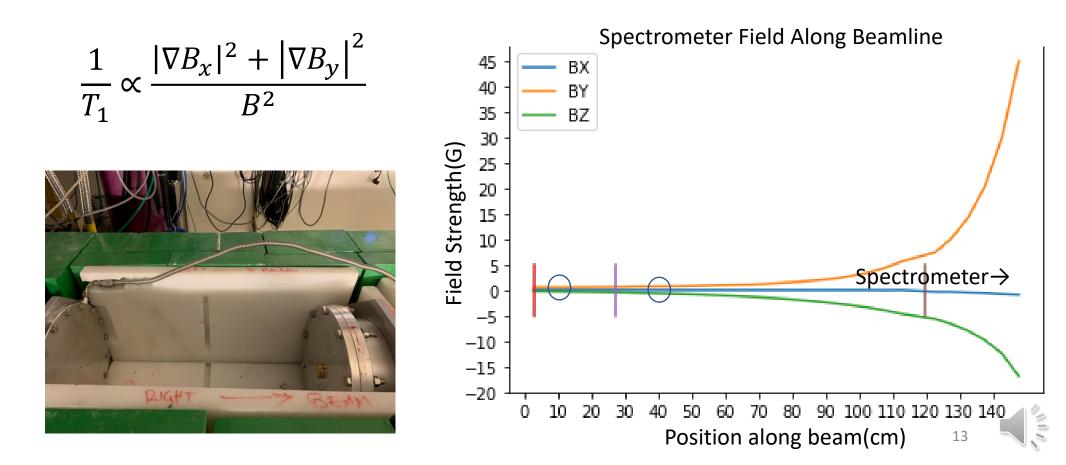

Φ

An Adiabatic Fast Passage Spin Flipper

We can integrate Bloch's Equations, sampling the field at different points in time as the neutron travels through it.

travels through it. Simulations like this help us predict how well our Spin Flipper will function in different fields, so that we can also include the effects of the spectrometer field, and learn how to compensate for those with auxiliary coils:

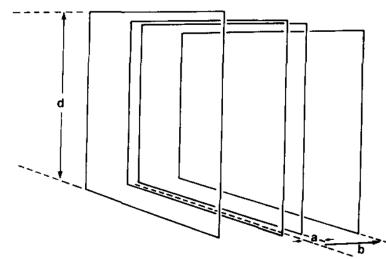
The cosine of the angle plotted here is the angle between the spin and the field in the lab frame (purple)


³He Holding Fields

We need our ³He Polarization to be consistent across our measurement, but it will decay as the ³He atoms move about in the cell and experience different field gradients. We want to minimize our field gradients to prolong ³He polarization lifetime.

Problem:

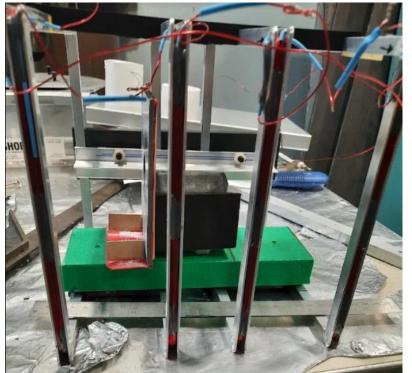
The fields from our spectrometer produce gradients in these regions


We have very limited space inside the shielding to produce the holding fields we need and control these gradients

³He Holding Fields

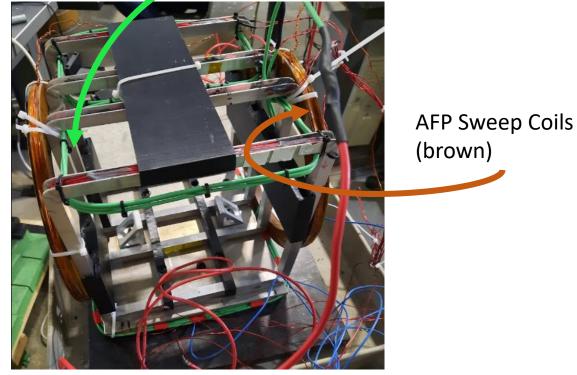
Solution: Merritt Coils

What We Designed:


• 2 sets of Merritt Coils

	Upstream Coil	Downstream Coil
Size (d)	200mm	220mm
a (distance between center and inner pair)	25.6mm	28.2mm
b (distance between center and outer pair)	101.1mm	111.2mm
Inner Pair Turns	11	36
Outer Pair turns	26	85
Current for 10G at center	4.285A	1.44A
Simulated Relative Gradient over 10cm cube at center	5.09x10 ⁻⁶	2.93x10 ⁻⁶

14

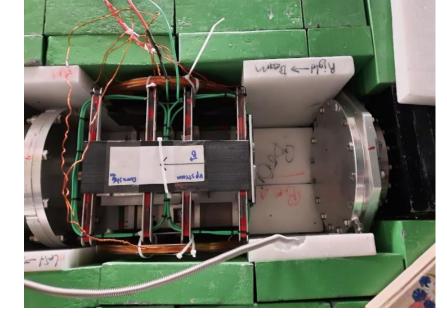

Equipment for Polarimetry ³He Holding Fields

Solution: Merritt Coils

Upstream Merritt Coil ³He Cell Scotty

Measured lifetime on Beamline: 44.3 +- 7.7 hrs This cell is smaller and further away from the spectrometer. we get an OK lifetime Compensation for Spectrometer (green)

Downstream Merritt Coil ³He Cell Hedy Lamar


Measured lifetime on Beamline: In Progress (Requires further tuning) Lifetime in Lab: 49+- 10.4 h

This cell is larger and closer to spectrometer the spectrometer, which makes the lifetime shorter.

Polarimetry

Estimate ³He lifetime ~30hrs in full fields: % of Helium polarization lost during:

- 1 neutron pulse (1/60s): 1.157e-05
- 60 neutron pulses (1s): 0.0006944
- 600 neutron pulses (10s): 0.006944
- 3600 neutron pulses (60s): 0.0416

We will fit neutron data for the ³He polarization in situ. We can attempt to match or group data with similar ³He polarizations.

• FID data is often noisy, and only yields a relative polarization measurement

We should be able to compare measurements that are over a minute apart, and still not be able to resolve the change in polarization. This also sets the time over which we want to think about flipping our systems, and canceling drifts:

- We will monitor temperatures of various devices, and currents to watch for drifts that may affect the efficiency of the Spin Flipper.
- We will also monitor the incoming neutron beam with an upstream monitor to normalize and correct for fluctuations in beam power.

Polarimetry : June 2022

What's Next? Neutrons!

- DS Merritt Coil needs further tuning.
- Mu-Metal shielding for Merritt Coils to reduce effects of outside fields
- New neutron monitor needs calibrated
- Need to measure thickness of ³He cells
 - Fit neutron spectra through unpolarized cells
- Take Data!

The Nab Collaboration

R. Alarcon^a, A. Atencio^k, S.Baeßler^{b,c} (Project Manager), S. Balascuta, L. Barrón Palosⁿ, T.L. Bailey^m, K. Bassⁱ, N. Birge^{i,k}, A. Blose^f, D. Borissenko^b, M. Bowler^b, J.D. Bowman^c (Co-Spokesperson), L. Broussard^c, A.T. Bryant^b, J. Byrne^d, J.R. Calarco^{c,i}, J. Choi^m, J. Caylorⁱ, L. Christieⁱ, T. Chupp^o, T.V. Cianciolo^c, C.B. Crawford^f, M. Cruzⁱ, X. Ding^b, George Dodson^s, W. Fan^b, W. Farrar^b, N. Fominⁱ, E. Frlež^b, J. Fry^q, M.T. Gericke^g M. Gervais^f, C. Gilbert^c, F. Glück^h, R. Godriⁱ, F. Gonzalez^c, G.L. Greene^{c,i}, R.K. Grzywaczⁱ, V. Gudkov^j, J. Hamblen^e, L. Hayen^m, C. Hayes^m, C. Hendrus^o, K. Imamⁱ, T. Ito^k, A. Jezghani^f, H. Li^b, M. Makela^k, N. Macsai^g, J. Mammei^g, R. Mammei^l M. Martinez^a, D.G. Mathews^f, M. McCrea^f, P. McGaughey^k, C.D. McLaughlin^b, J. Mirabal-Martinez^k, P.E. Mueller^c, A. Nelsen^f I. Novikov^p, D. van Petten^b, S.I. Penttilä^c (On-site Manager), D.E. Perrymanⁱ, J. Pierce^r, D. Počanić^b (Co-Spokesperson), H. Preslevⁱ, Yu Qian^b, H. Rahangdaleⁱ J. Ramsey^c, G. Randall^a, G. Riley^{i,k}, K.P. Rykaczewski^c, A. Salas-Bacci^b S. Samiei^b A. Saunders^c, E.M. Scottⁱ, T. Shelton^f, S.K. Sjue^k, A. Smith^b, E. Smith^k, E. Stevens^b, L. Tinius^b, J. Thomison^c, J.W. Wexler^m, R. Whiteheadⁱ, W.S. Wilburn^k, A.R. Young^m, B.Zeck^m, M. Zemkeⁱ

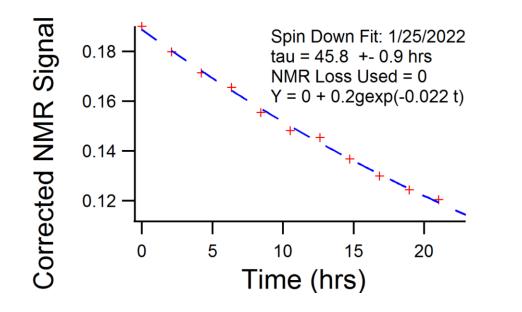
^a Arizona State University, Tempe, AZ 85287-1504
^b University of Virginia, Charlottesville, VA 22904-4714
^c Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
^d University of Sussex, Brighton BN19RH, UK
^e University of Tennessee at Chattanooga, Chattanooga, TN 37403
^f University of Kentucky, Lexington, KY 40506
^g University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
^h KIT, Universität Karlsruhe (TH), Kaiserstraße 12, 76131 Karlsruhe, Germany
ⁱ University of South Carolina, Columbia, SC 29208

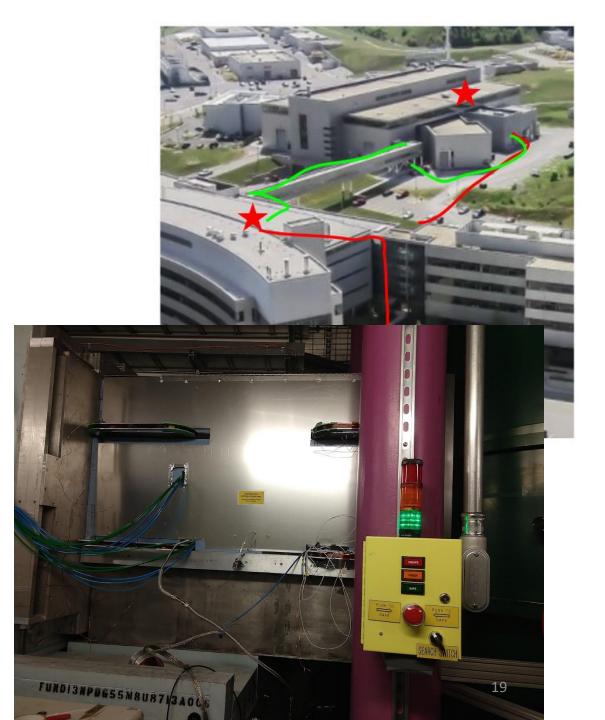
Main Project Funding:

Office of Science

^k Los Alamos National Laboratory, Los Alamos, NM 87545
¹University of Winnipeg, Winnipeg, Manitoba R3B2E9, Canada
^m North Carolina State University, Raleigh, NC 27695-8202
ⁿ Universidad Nacional Autónoma de México, México, D.F. 04510, México
^o University of Michigan, Ann Arbor, MI 48109
^p Western Kentucky University, Bowling Greene, KY
^q Eastern Kentucky University, Richmond, KY 40475
^r Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

^s Massachusetts Institute of Technology, Cambridge, MA 02139

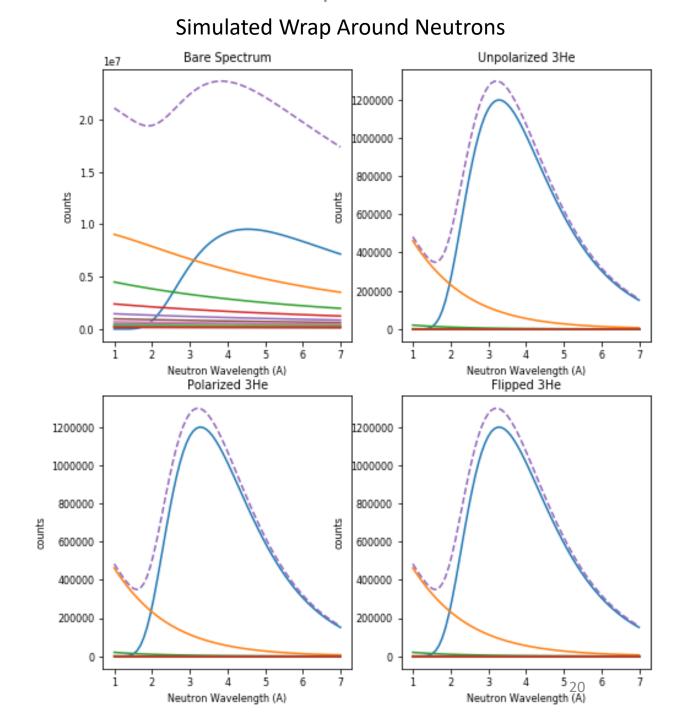




18

Measuring ³He Polarization Lifetime

- Polarize ³He cell using Spin Exchange Optical Pumping
- Transfer Cell to environment
 - We lose some polarization in this process
- Measure relative polarization using Free Induction Decay (FID) over various timing intervals (hrs)
- Use the amplitude of the FID signals to examine the decay of polarization over time


Polarimetry

Our DAQ takes "frames" of data at a rate of 60Hz

- This coincides with the neutron pulses from the SNS
- Neutron pulses overlap
 - We have concerns about the Choppers imparting or modifying the polarization of the beam, so we will need to be able to examine the overlapping specra from the monitor.
 - We can fit for spectrum parameters and reconstruct a single pulse

We will monitor temperatures of various devices, and currents to watch for drifts that may affect the efficiency of the Spin Flipper.

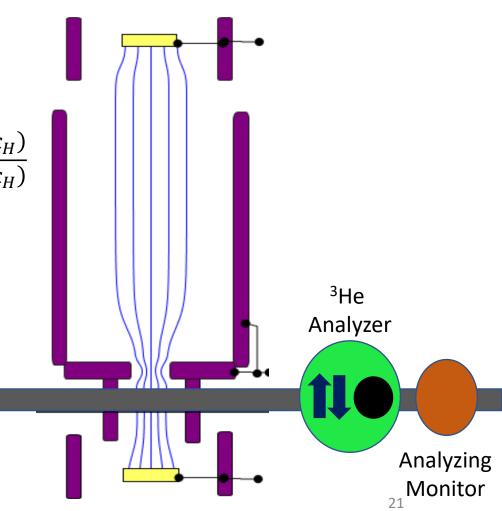
We will also monitor the incoming neutron beam with an upstream monitor to normalize and correct for fluctuations in beam power.

Measuring A Polarization by Flipping ³He

Flipping the ³He yields a more complicated analysis, but might be more easily achievable

- We can measure our flipping efficiency independently of the Neutrons using FID signals from the ³He
 - Efficiencies of 92-99% have been recorded in the lab

$$CTR = \frac{T_{+} - T_{-}}{T_{+} + T_{-}} = \tanh cP_{H}\varepsilon_{H}\lambda \frac{\sinh cP_{H}\lambda(1 - \varepsilon_{H}) - P_{n}\cosh cP_{H}\lambda(1 - \varepsilon_{H})}{\cosh cP_{H}\lambda(1 - \varepsilon_{H}) + P_{n}\sinh cP_{H}\lambda(1 - \varepsilon_{H})}$$


If $\epsilon_{\rm H} \approx 1$ this becomes

Normalizing

Monitor

$$CTR = \frac{T_+ - T_-}{T_+ + T_-} = P_n \tanh c P_H \lambda$$

AFP Neutron Spin Flipper

The Nab Experiment Systematic Uncertainties

Experimental parameter	Main specification	$(\Delta a/a)_{syst}$
Magnetic field		
curvature at pinch	$\Delta \gamma / \gamma = 2\%$ with $\gamma = d^2 B_z(z)/dz^2/B_z(0)$	5.3·10 ⁻⁴
\dots ratio $r_{\rm B} = B_{\rm TOF}/B_0$	$(\Delta r_B)/r_B = 1\%$	2.2.10-4
ratio $r_{\rm B,DV} = B_{\rm DV}/B_0$	$(\Delta r_{B,DV})/r_{B,DV} = 1\%$	1.8.10-4
Length of the TOF region		none
Electric potential inhomogeneity:		
in decay volume / filter region	$ U_F - U_{DV} < 10 \text{ mV}$	5.10-4
in TOF region	$ U_F - U_{TOF} < 200 \text{ mV}$	2.2.10-4
Neutron beam:		
position	$\Delta \overline{z_{DV}} < 2 \text{ mm}$	1.7.10-4
profile (including edge effect)	Slope at edges < 10%/cm	2.5.10-4
Doppler effect		small
Unwanted beam polarization	P _n <2·10 ⁻⁵	1.10-4
Adiabaticity of proton motion		1.10-4
Detector effects:		
Electron energy calibration	$\Delta E < 0.2 \text{ keV}$	2.10-4
Shape of electron energy response	fraction of events in tail to 1%	4.4·10 ⁻⁴
Proton trigger efficiency	$\epsilon_p < 100~{ m ppm/keV}$	3.4.10-4
TOF shift due to detector/electronics	$\Delta t_p < 0.3 \text{ ns}$	3.9.10-4
Electron TOF		small
Residual gas	$p < 2 \cdot 10^{-9}$ torr	3.8·10 ⁻⁴ (prelim.)
TOF in acceleration region	$\Delta r_{ground \ el.} < 0.5 \ \mathrm{mm}$	3.10-4 (prelim.)
Background / Accidental coincidences		small
Sum		1.2.10-3

22