

The Nab Experiment: Present Status

Frank Gonzalez

Oak Ridge National Laboratory, Physics Division

APS DNP/JPS Joint Meeting, Waikoloa December 1, 2023

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Beta-Decay: Why Use Neutrons?

- Neutrons are the simplest β -decay:
 - $n \rightarrow p^+ + e^- + \overline{\nu_e}$
 - $|V_{ud}|^2 = \frac{5099.3 \,\mathrm{s}}{\tau_n \,(1+3 \,\lambda^2)(1+\Delta_R)}$
- Experimentally Determine:
 - τ_n : Neutron Lifetime
 - $\lambda = g_A / g_V$: Ratio of coupling constants
- Theoretically Easier:
 - No nuclear structure corrections!
 - Inner radiative correction Δ_R
- To compete with $0^+ \rightarrow 0^+$ measurements:
 - $-\Delta \tau_n / \tau_n < 3 \times 10^{-4}$ (or $\Delta \tau_n < 0.3$ s)
 - $\Delta \lambda / \lambda < 1 \times 10^{-3}$ (or $\Delta \lambda < 1 \times 10^{-3}$)

Tension between V_{ud} and V_{us} ! See: Cirialiano et al, J. High Energ. Phys. 2022, 152 Tension between different methods of determining $\tau_n, \lambda!$ Data from:

How to Measure λ ?

Decay rate of the neutron is proportional to:

 $\frac{d\Gamma^3}{dE_e d\Omega_e d\Omega_\nu} \sim p_e E_e E_\nu^2 (1+3\lambda^2) \left[1 + b \frac{m_e}{E_e} + a \frac{\overrightarrow{p_e} \cdot \overrightarrow{p_\nu}}{E_e E_\nu} + \langle \overrightarrow{\sigma_n} \rangle \cdot \left(\mathbf{A} \frac{\overrightarrow{p_e}}{E_e} + \mathbf{B} \frac{\overrightarrow{p_\nu}}{E_\nu} \right) + \cdots \right]$

• These correlation terms (asymmetries) relate to $\lambda = g_A/g_V$:

$$- a = \frac{1 - \lambda^2}{1 + 3\lambda^2}$$
$$- A = -2\frac{\lambda^2 + \lambda}{1 + 3\lambda}$$

- Fierz Interference term b couples to scalar (g_S) , tensor (g_T) currents in weak interaction
 - Non-zero g_S , g_T is new physics

Kinematics of Unpolarized Neutron β -Decay

• For unpolarized neutrons:

- $d\Gamma^3 \propto 1 + a \frac{|\overrightarrow{p_e}| |\overrightarrow{p_{\nu}}|}{E_e E_{\nu}} \cos(\theta_{e\nu}) + b \frac{m_e}{E_e}$
- Relativistic kinematics:
 - Relativistic Energy (for $i \in \{n, p^+, e^-, v\}$):
 - $E_i^2 = \overrightarrow{p_i}^2 + m_i^2$
 - Conservation of E:
 - $E_{\nu} = E_n (E_e + E_p)$
 - Conservation of \vec{p} :
 - $\cos(\theta_{ev}) = \frac{\overline{p_p}^2 \overline{p_e}^2 \overline{p_v}^2}{2|\overline{p_o}||\overline{p_v}|}$
- After some algebra, find $d\Gamma^3(E_e, p_p^2)$
 - If we can reconstruct E_e , p_p^2 for each decay, we can extract a, b...

Reconstructing β -Decay Product Kinematics

- Use an asymmetric (7m long) spectrometer
- Beam of cold spallation neutrons

Reconstructing β -Decay Product Kinematics

- Use an asymmetric (7m long) spectrometer
- Beam of cold spallation neutrons
- Magnetic fields guide decay products
 - High-field decay region
 - Low-field time of flight region longitudinalizes momentum

Reconstructing β -Decay Product Kinematics

- Use an asymmetric (7m long) spectrometer
- Beam of cold spallation neutrons
- Magnetic fields guide decay products
 - High-field decay region
 - Low-field time of flight region longitudinalizes momentum
- Detect coincident p^+ and e^- at one of two silicon detectors
 - E_e measured in detector
 - $\left| \overrightarrow{p_p} \right|$ determined from proton time of flight

Electron Response Function

- Need to understand $E_{e,meas}$ for each E_e to 1%
 - Fast + Linear electronics response
 - Electron bounce history

 10^{2}

)ak Ridge

National Laboratory

- Energy loss in detector due to Bremsstrahlung
- Simulate detector response and measure ¹⁰⁹Cd Energy Spectrum, One Detector

APS/JPS DNP (Gonzalez 12/1/2023)

Determining p_p from Time of Flight

• Charged particle (p^+) moving through EM field:

$$- t_{p} = \frac{m_{p}}{p_{p}} \int_{Z_{0}}^{L} \frac{dz}{\sqrt{1 - \frac{B(z)}{B_{0}} \sin^{2}(\theta_{0}) + \frac{q(V(z) - V_{0})}{E_{0}}}}$$

- Smearing of response due to θ_0 , z_0
- High magnetic field rejects p^+ with:
 - $\cos(\theta_0) < \sqrt{1 B_0/B_f} \sim 0.7$

Fry et al. EPJ Web of Conferences 219, 04002 (2019)

CAK RIDGE National Laboratory

Target Uncertainties for *a* and *b*

•	Leading uncertainties:
	– Magnetic Field (only a)
	 Detector Effects (both a and b)
	– Neutron Beam (only a)
•	Goal precision:
	$-\Delta a/a \sim (1 \times 10^{-3})_{tot.}$
	$- \Delta \lambda / \lambda \sim (4 \times 10^{-4})_{tot.}$
	$-\Delta b \sim (3 \times 10^{-3})_{tot.}$
•	Not statistically limited!

Experimental Parameter	$(\Delta a / a)_{sys.}$
Magnetic Field	6.0×10^{-4}
Electric Potential Inhomogeneity	5.5×10^{-4}
Neutron Beam	3.3×10^{-4}
Adiabaticity of Proton Motion	1×10^{-4}
Detector Effects	7.1×10^{-4}
Electron TOF	$< 1 \times 10^{-4}$
Residual Gas	3.8×10^{-4}
TOF in Acceleration Region	3×10^{-4}
Background/Accidental	
Coincidences	$< 1 \times 10^{-4}$
Length of the TOF Region	N/A
SUM	1.2×10^{-3}

Target Uncertainties for *a* and *b*

N	lab Talks		Session	
• H	. Rahangda	le	D05:00007	
R	. Godri		F04:00007	
-	- Detector E	ffe	cts (both a and b)	
Nab	Talks	Se	ssion	
A.M	endelsohn	DC)5:00004	
H. A	charya	FO ⁴	4:00004	
L. Cł	nristie	F0 ⁴	4:00005	
M. G	Servais	F0 ⁴	4:00006	
A. N	lelsen	F0 ⁴	4:00008	
J.H.	Choi	L1	1:00003	
A. Ri	chburg	Pc	ster DB02.00099	

Experimental Parameter	$(\Delta a / a)_{sys.}$
Magnetic Field	$6.0 imes 10^{-4}$
Electric Potential Inhomogeneity	$5.5 imes 10^{-4}$
Neutron Beam	3.3×10^{-4}
Adiabaticity of Proton Motion	1×10^{-4}
Detector Effects	7.1×10^{-4}
Electron TOF	$< 1 \times 10^{-4}$
Residual Gas	3.8×10^{-4}
TOF in Acceleration Region	3×10^{-4}
Background/Accidental	
Coincidences	$< 1 \times 10^{-4}$
Length of the TOF Region	N/A
SUM	1.2×10^{-3}

11

Summer Commissioning + Data Taking

• First time with 2 detectors in working magnet with high voltage and neutrons!

- Normal Data Taking = 20%
- Systematics (+ Reduced Intensity) = 46.7%
- Background = 12.0%

é.Oak Ridge

National Laboratory

- Caveat: Electronics and Detector Issues
 - Electronics unstable
 - Parts of detector system unresponsive
 - Lower detector underdepleted

Detected Proton Rate

• Upgrade of detector system underway

Proton Response

- We see protons!
 - Observed p^+ , e^- coincidence rate in our detectors ~50 n/s
- Proton peak lower than expected
 - Expected 20 keV for -30 kV detector voltage _
 - See peak at ~10 keV, lower than expected _

Rate

Simulated Proton Spectrum

13

Neutron Decays!

- First Full-Phasespace Reconstruction of Neutron Decay!
- Measured 1.6e7 coincidences above background
 - Corresponds to $(\Delta a/a)_{stat} \sim 1.1 \times 10^{-2}$
 - Detector response leads to large (presently unquantified) systematic shifts

The Nab Collaboration

• Nab Collaborating Institutions:

Main Project Funding:

APS/JPS DNP (Gonzalez 12/1/2023)

CAK RIDGE

16

Extra Slides (Nab)

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Full Systematics Budget a

Experimental Parameter	Parameter Breakdown	Design Specifications or Other Comments	$(\Delta a / a)_{sys.}$
Magnetic Field	Curvature at Pinch	$\Delta \gamma / \gamma = 2\%$ with $\gamma = d^2 B_z(z) / dz^2 / B_z(0)$	5.3×10^{-4}
	Ratio $r_B = B_{TOF}/B_0$	$(\Delta r_B)/r_B = 1\%$	2.2×10^{-4}
	Ratio $r_{B,DV} = B_{DV}/B_0$	$(\Delta r_{B,DV})/r_{B,DV} = 1\%$	1.8×10^{-4}
Electric Potential Inhomogeneity	In Decay Volume / Filter Region	$ U_F - U_{DV} < 10 \text{ mV}$	5×10^{-4}
	In TOF Region	$ U_F - U_{TOF} < 200 \text{ mV}$	2.2×10^{-4}
Neutron Beam	Position	$\Delta \overline{z_{DV}} < 2 \text{ mm}$	1.7×10^{-4}
	Profile	Slope at edges < 10% / cm	2.5×10^{-4}
	Doppler Effect	Analytical Correction	$< 1 \times 10^{-4}$
	Unwanted Beam Polarization	$ \overline{P_n} \ll 10^{-4}$	1×10^{-4}
Detector Effects	Electron Energy Calibration	$\Delta E < 0.2 \text{ keV}$	2×10^{-4}
	Shape of Electron Energy Response	fraction of events in tail to 1%	4.4×10^{-4}
	Proton Trigger Efficiency	$\epsilon_p < 100~{ m ppm}$ / keV	3.4×10^{-4}
	TOF Shift due to Detector/Electronics	$\Delta t_p < 0.3$ ns	3.9×10^{-4}
Adiabaticity of Proton Motion			1×10^{-4}
Electron TOF		Analytical Correction	$< 1 \times 10^{-4}$
Residual Gas		$P < 2 \times 10^{-9}$ torr	3.8×10^{-4}
TOF in Acceleration Region		$\Delta r_{ground \; el.} < 0.5 \; { m mm}$	3×10^{-4}
Background/Accidental Coincidences		Will subtract out of time coinc.	$< 1 \times 10^{-4}$
Length of the TOF Region		Fitted Parameter in Analysis	N/A
Sum	APS/JPS DNP (Gonzalez 12/1/2023)		1.2×10^{-3}

18

Systematic Reach for **b**

Experimental Parameter	Parameter Breakdown	Design Specifications or Other Comments	$(\Delta b / b)_{sys.}$
Detector Calibration and	Gain Factor	ain Factor Fitted Parameter in Analysis	
Response	Offset	$\Delta_{off} < 0.08 \ {\rm keV}$	1×10^{-3}
	Nonlinearity Determination	Maximum Discrepancy < 0.07 keV	1×10^{-3}
	Full Width-Half Mean Determination	Negligible	N/A
	Tail	$\Delta_{tail} < 1\%$	1×10^{-3}
Time of Flight Cut		TOF Cut > 22 μ s	5×10^{-4}
Neutron beam polarization		Negligible	N/A
Proton Detection Efficiency		Negligible	N/A
Edge effect		Detection Radius < 2.9 cm	1×10^{-3}
Sum			2.2×10^{-3}

PhD Thesis H. Li, UVA

Statistical Reach of Nab

- Expect 1600 decays/second in decay volume
 - 12.7% of protons go to upper detector
 - 200 protons/second
- Can see 3.8×10^8 events in 6 weeks
 - $(\Delta a/a)_{stat} \sim 2 \times 10^{-3}$
 - $\Delta b_{stat} \sim 2 \times 10^{-4}$ (but really parasitic)
- Over 2 years of dedicated running, reach 4.4×10^9 protons in upper detector
 - $(\Delta a/a)_{stat} \sim 7 \times 10^{-4}$
 - $\Delta b_{stat} \sim 7 \times 10^{-5}$

E _{e,min} (keV)	0	100	100	100
$t_{\mathrm{p},max}\left(\mu\mathrm{s} ight)$	8	8	40	30
$\Delta a (N_u, a, b)$	$2.4/\sqrt{N_u}$	$2.5/\sqrt{N_u}$	$2.7/\sqrt{N_u}$	$3.0/\sqrt{N_u}$
$+ E_{cal}, L_{TOF}$	$2.6/\sqrt{N_u}$	$2.7/\sqrt{N_u}$	$2.9/\sqrt{N_u}$	$3.2/\sqrt{N_u}$
+ 75% of data	$3.4/\sqrt{N_u}$	$3.5/\sqrt{N_u}$	$3.8/\sqrt{N_u}$	$4.4/\sqrt{N_u}$
+10% bkg.	$4.4/\sqrt{N_u}$	$4.6/\sqrt{N_u}$	$4.7/\sqrt{N_u}$	$5.2/\sqrt{N_u}$
			D.	Počanić, UVA

$E_{e,min}$ (keV)	0	100	200	300
$\Delta b (N, a, b)$	7.5/√ <i>N</i>	$10.1/\sqrt{N}$	15.6/√ <i>N</i>	26.3/√ <i>N</i>
$+ E_{cal}$	$9.1/\sqrt{N}$	$12.7/\sqrt{N}$	$20.4/\sqrt{N}$	36.0/√ <i>N</i>

H. Li, UVA

National Laboratory

Experimental Probes of CKM Unitarity

- Precision measurements of CKM (quarkmixing matrix) unitarity:
 - $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{BSM}$ $\bullet \quad \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{ud} & V_{ub} \end{pmatrix}$
- Measurements of V_{ud} :
 - Most precise "Superallowed" $0^+ \rightarrow 0^+$ decays
 - Require radiative and nuclear structure corrections $(0^+ \rightarrow 0^+, \text{Mirrors})$
- Measurements of V_{us} :

CAK RIDGE

National Laboratory

21

- Most precise from Kaon decays
- Tension between different decay channels
- Presently 2.2 σ discrepancy!

Characterization of Magnetic Field

- Need to understand B(z) to determine t_p
 - Have done measurements with Hall _ probe
 - Good agreement with simulation _
- Analysis of magnetometry data ongoing

Magnetic Field	Target Uncertainty	$(\Delta a / a)_{sys.}$
Curvature at Pinch		
γ	$\Delta \gamma / \gamma = 2\%$	5.3×10^{-4}
Ratio $r_{B,TOF} =$		
B_{TOF}/B_f	$(\Delta r_{B,\mathrm{TOF}})/r_{B,\mathrm{TOF}} = 1\%$	2.2×10^{-4}
Ratio $r_{B,DV} = B_{DV}/B_f$	$(\Delta r_{B,DV})/r_{B,DV} = 1\%$	1.8×10^{-4}
SUM		6.0×10^{-4}

Distortion of Teardrop Due To Missing Pixels

23

Foreground and Background

Coincidence Timing Distribution

25

• 500 ns difference between simulation and data

Looking Forward: pNab

Use the same apparatus to measure A, B

- Add a neutron beam polarizer
- Goals:
 - $\Delta A/A \leq 10^{-3}$
 - $\Delta B/B \leq 10^{-3}$

Uncertainties in previous experiments:

- Statistics
 - Sufficient for competitive measurements of A
- Detector Effects
 - Already high enough detector energy resolution
 - Sufficient time resolution
- Background
 - Coincidence detection to suppress background
- Polarization

CAK RIDGE National Laboratory

26

• Utilize crossed supermirrors or ³He

Different systematics!

