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Motivation and goal

To determine the proton momentum from time-of-flight using the
difference in decay electron/proton arrival times, the average timing

response bias needs to be within 0.3 ns to meet Nab's precision goals for
finding the a parameter.

Trajectories and energies of these decay pairs change the deposition of
energy resulting in discrepant pulse shapes and timings.
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Motivation and goal cont.
o Particle depth affects the drift times of created e~ /h pairs and thus
the charge collection times.

@ We know there are serious implications for timing resolution, but
more study is needed to see the severity on electron energy (e.g
undepleted regions).

@ An immediate application is if this needs to be taken into account for
the Fierz interference term search in the ¥°Ca experiment from 2017.

@ We have created a simulation framework that can be benchmarked
with detector studies such as discussed by Glenn.
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Outline

@ CASINO (monte CArlo Simulation of electroN trajectory in sOlids)!
o Calculates trajectories of primary electrons.

e Use to classify trajectories and find functional forms to perform a data
reduction.

Q@ COMSOL®?
o Model geometry and solve by finite element analysis Poisson/Laplace
eq.'s for potentials.
o Output a grid of electric/weighting fields.

@ Custom Code

(CASINO {COMSOLW
e Determine induced current of ions with Shockley-Ramo g g
Thm. (CusToM )
L CODE )
e Find integrated charge of incident particles.
WAVEFORMS

ip. Drouin, et al., Scanning 29, 92-101(2007).
2comsoL Multiphysics® v. 5.1. www.comsol.com.
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CASINO results

@ Instead of single electrons, build a table of classifications to use in
other steps of simulation.

@ 60 — 70%, trajectories look like (a), but others need to be handled as
well.

Examples of electron tracks and energy deposition depths:

Energy of e~ vs Depth (200 keV e ~)
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CASINO results

Type a classification:

r= EB3 - EBl+2

@ Looking at how much energy is deposited in the deepest third of an
electron’s track, compared to in shallower depths.

Energy Deposited at Depth (200 keV e ™)
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CASINO results

Mean Depth vs " (300keV electrons)

’g Classifications
3 . Type/é
=250 | fee
= L
3 -
2 200/
S C
Q’ —
= 150(

100}

50/

ob
- 0 50 100 150 200 250

[ =Ep, - Bp, ,*¢V)

@ Rough division of trajectories into forward (a), back scattered (b),
other (c)
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CASINO results

For each classification, empirically find functional forms® for the probability
distribution of any electron energy along z depth.

Energy deposition over depth
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D(i) = %HD exp (i _ﬁio) erfc <;T/§ + 55/5) .

3L Campbell & J.A. Maxwell, NIM B 129 (1997) 297-299
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COMSOL results

© Electric potential found from

AV = _p/67

where p is the average net impurity
density in the detector, currently taken
as uniform.

Figure: Electric Field

@ Weighting potential found from

AV; =0,

where the central pixel set to unity, else
set to ground.

Figure: Weighting Potential

Shelton (UKy) DNP 2019-10-17 thomas.shelton@uky.edu 9/12



Methods: custom code

o Take field grids from COMSOL.

@ Determines induced current i from a e /h pair given some creation
point using Shockley-Ramo Thm.

= q<Vd7 E0>7
where g is the charge of the carrier, vy is the drift velocity, and Ej is
the weighting field.

@ This Ey is a field determined by the geometry of our detector. As
such, where the ions are created with respect to the edge of the unity
pixel leads to different energy deposition.

@ Combine with average deposition distributions from CASINO to get
the energy deposited by an incident electron.
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Custom code results

We can generate the induced signals of primary electrons on the detector.

Integrated current of an e/h pair vs. time Induced signals of primary electrons
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Figure: Induced current from Figure: Integrated charge run
single e~ /h pair created at through electronics simulation to
detector center. get a signal.

3Li, S. S. and W. R. Thurber, Solid State Electron. 20, 7 (1977) 609-616.
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Summary

@ We have created a framework for waveform simulation that we can
expand and benchmark.

@ Use to investigate the edge effects and further studies on systematics.

@ David Mathews with discuss the different algorithms we can use to
determine bias in these waveforms.
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