Magnetometry for the Nab Experiment

E. Mae Scott for the Nab Collaboration

University of Tennessee, Knoxville

2020 DNP

E. Mae Scott for the Nab Collaboration (University Magnetometry for the Nab Experiment

Nab is an Unpolarized Measurement

Parametrization of Neutron Beta Decay

$$\frac{\partial^{3}\omega}{\partial E_{e}\partial\Omega_{e}\partial\Omega_{\nu}} \propto \frac{1}{\tau_{n}} \propto p_{e}E_{e}(E_{0}-E_{e})^{2} \left[1+a\frac{\vec{p_{e}}\cdot\vec{p_{\nu}}}{E_{e}E_{\nu}}+b\frac{\vec{m_{e}}}{E_{e}}+\vec{\sigma_{n}}\cdot\vec{A}\frac{\vec{p_{e}}\cdot\vec{p_{\nu}}}{E_{e}}+\dots\right]$$

To extract a, we use an unpolarized neutron beam and set the spin correlation terms to zero. The Fierz interference term, b, is zero in the Standard Model.

$$\frac{\partial^3 \omega}{\partial E_e \partial \Omega_e \partial \Omega_\nu} \propto p_e E_e (E_0 - E_e)^2 \left[1 + a \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} \right]$$

Extracting a in the Nab Experiment

$$\Gamma = f(E_e) \left[1 + a \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} \right] = f(E_e) \left[1 + a\beta_e \cos\theta_{e\nu} \right] = f(E_e) \left[1 + a\beta_e \frac{p_\rho^2 + p_e^2 + p_\nu^2}{2p_e p_\nu} \right]$$

1.5

proton phase space

Determining $cos\theta_{e\nu}$

• Known Q value of neutron beta decay

 $\cos \theta_{ev} = 1$ 1.25 E_ = (MeV²/c²) 0.75 75 keV 236 keV $\cos \theta_{ev} = 0$ 450 keV a⁰.5 700 keV 0.25 $\cos \theta_{ev} = -1$ 0 0.2 04 0 0.6 0.8 E_a (MeV)

E_e p_p

Figure: Pocanic et al, NIMA 611 (2009) 211, Baessler et al, AIP Conf Proc 1560 (2013) 114

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

probability (arb units)

Nab Experimental Design

通 ト イ ヨ ト イ ヨ ト

Nab Experimental Design

Extracting a in the Nab Experiment

Precision Requirements

	2	
Experimental Parameter	Principle specification	$(\Delta a/a)_{syst}$
Magnetic Field:		
curvature at pinch	$\Delta \gamma / \gamma = 2\%$ with $\gamma = (d^2 B_z(z)/dz^2)/B_z(0)$	$5.3 imes10^{-4}$
ratio $r_B = B_{TOF}/B_0$	$(\Delta r_B)/r_B = 1\%$	2.2×10^{-4}
ratio $r_{B,DV} = B_{DV}/B_0$	$(\Delta r_{B,DV})/r_{B,DV}=1\%$	$1.8 imes10^{-4}$
L _{TOF} , length of TOF region		(* Free fit parameter)
U inhomogeneity:		
in decay / filter region	$ U_F - U_{DV} < 10 \text{ mV}$	$5 imes 10^{-4}$
in TOF region	$ U_F - U_{TOF} < 200 \text{ mV}$	2.2×10^{-4}
Neutron beam:		
position	$\Delta \langle z_{DV} angle < 2 \ { m mm}$	1.7×10^{-4}
profile (incl. edge effect)	slope at edges $<10\%$ / cm	$2.5 imes 10^{-4}$
Doppler effect	analytical correction	small
unwanted beam polarization		measure
Adiabaticity of proton motion		1×10^{-4}
Detector effects:		
E_e calibration	$\Delta E_e < 200 \; { m eV}$	$2 imes 10^{-4}$
proton trigger efficiency	$\Delta N_{tail}/N_{tail} \leq 1\%$ / cm	3.4×10^{-4}
TOF shift (det./electronics)	$\epsilon_p < 100 \text{ ppm/keV}$	$3 imes 10^{-4}$
shape of E_e response		4.4×10^{-4}
TOF in acceleration region	r _{electrods} (prelim)	3×10^{-4}
electron TOF	analytic correction	small
BGD/accid. coinc's	(will subtract out of time coinc)	small
Residual gas	$P < 2 \cdot 10^{-9}$ torr	$3.8 imes10^{-4}$
Overall sum		$1.2 imes 10^{-3}$

Nab systematic uncertainties

H 5

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Spectrometer Uncertainties

Spectrometer systematic uncertainties			
Experimental Parameter	Principle specification	$(\Delta a/a)_{syst}$	
Magnetic Field:			
curvature at pinch	$\Delta \gamma / \gamma = 2\%$ with $\gamma = (d^2 B_z(z)/dz^2)/B_z(0)$	$5.3 imes10^{-4}$	
ratio $r_B = B_{TOF}/B_0$	$(\Delta r_B)/r_B = 1\%$	2.2×10^{-4}	
ratio $r_{B,DV} = B_{DV}/B_0$	$(\Delta r_{B,DV})/r_{B,DV} = 1\%$	1.8×10^{-4}	
L_{TOF} , length of TOF region		(* Free fit parameter)	
Overall sum		$6.0 imes10^{-4}$	

글 > 글

(日)

Mapping Requirements

Mapping the Field: Physical Challenges

- The range of field strength requires the use of a Hall Probe, which **must operate at room temperature**.
- The hall probe position must be measured with respect to the magnet.
- We must align the probe normal to the field to measure the magnitude of the field to a 10⁻⁴ precision.

Solution: Insertion of an Inverted Dewar

 We inserted an aluminum dewar wrapped in mylar superinsulation to create an "inverse dewar" inside the magnet.

• While the magnet is cold, we can access most of the field inside this room temperature dewar.

Solution: Connecting Calibrated Hall Probe and Leica Laser Tracker

Solution: Design of the Off Axis Hall Probe Holder

Figure: Iteration 15 tilt table.

- Since our field is cylindrically symmetric, on axis fields will align vertically.
- For off axis fields, I designed a "tilt table" that rotates the Hall probe radially and measures the peak magnitude of the field.
- This tilting can be done from a distance of about 6 meters using a cable system similar to bike brakes.

E. Mae Scott for the Nab Collaboration (University Magnetometry for the Nab Experiment -

200

э

500

Z Position (cm)

400

Mapping the Field: Analysis Challenges

- We need to use the data to find a full field expansion from the on axis data.
- We must find the magnetic field axis, not the mechanical axis of the magnet can.

Theoretical Off Axis Expansion

B Field (T) On Axis Field B Field (T) On Axis Field 1.8 Back Transformation of Off Axis Back Transformation of Off Axis Ference Off Axis Field Ference Off Axis Field 3.5 1.4 3 1.2 2.5 2 0.8 1.5 0.6F 0.4 0.5 0.2 -600 -400-200200 400 600 800 -200-100100 200 300 400 Z position (mm) Z position (mm) Residue between the FFT and Theoretical Data Residue (difference) 0.007E Residues of Modulus 0.006 0.005 0.004 0.003 0.002 0.001E 0 -0.001E -200 200 1000 -400400 600 800 Z position (mm)

A trimmed FFT with Hann Windowing

Off Axis Expansion of Real Data

Performing the off axis expansion shows that there is some discrepancy between the expected off axis field and the measured field.

Finding the Magnetic Field Axis

Run 609, Fit from offsetting the data by (-0.20,0.12)

We have two agreeing methods for determining the magnetic axis!

- Radial: $(-0.21 \pm 0.03, 0.12 \pm 0.02)$ cm
- Bessel: $(-0.186 \pm 0.007, 0.105 \pm 0.007)$ cm

Figure: Courtesty of J.Fry

・ 何 ト ・ ヨ ト ・ ヨ ト

Conclusions and Future Work

- We have a method for expanding the field from on axis data that is good to 10^{-2}
- We also have two agreeing independent methods for determining the magnetic axis from the filter region.
- Analysis of data to find offset in other parts of the field is in progress.

The Nab collaboration

Active and recent collaborators:

R. Alarcon^a, A. Atencio^k, S.Baeßler^{b,c} (Project Manager), S. Balascuta^a, L. Barrón Palos^a, T.L. Bailey^m, K. Bassⁱ, N. Birge^k, A. Blose^f, D. Borissenko^b, J.D. Bowman^c (Co-Spokesperson), L. Broussard^c, A.T. Brvant^b, J. Byrne^d, J.R. Calarco^{c,i}, J. Choi^m, J. Caylorⁱ, T. Chupp^a, T.V. Cianciolo^c, C. Crawford^f, M. Cruzⁱ, X. Ding^b, W. Fan^b, W. Farrar^b, N. Fominⁱ, E. Frležⁱ, J. Fry^a, M.T. Gericke^e, M. Gervais^f, F. Glück^b, G.L. Greene^{c,i}, R.K. Grzvwaczⁱ, V. Gudkovⁱ, J. Hamblen^c, L. Hayen^m, C. Hayes^m, C. Hendrus^o, T. Ito^k, A. Jezghani^f, H. Li^b, M. Makela^k, N. Macsai^s, J. Mammei^k, R. Mammeiⁱ, M. Martinez^a, D.G. Mathews^f, M. McCrea^f, P. McGaughey^k, C.D. McLaughlin^b, P. Mueller^s, D. van Petten^b, S.I. Penttilä^c (On-site Manager), D.E. Pertrymanⁱ, R. Picker^b, J. Pierce^e, D. Počanić^b (Co-Spokesperson), H. Presleyⁱ, Yu Qian^b, G. Randall^a, G. Riley^k, K.P. Rykaczewski^s, A. Salas-Bacci^b, S. Samieⁱ, E.M. Scott^s, T. Shelton^f, S.K. Siue^k, A. Smith^k, E. Stevens^b, J.W. Wexler^m, R. Whiteheadⁱ, W.S. Wilburn^k, A.R. Young^m, B.Zeck^m, M. Zemkeⁱ

Arizona State University, Tempe, AZ 85287-1504
 ^b University of Virginia, Charlottesville, VA 22904-4714
 ^c Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
 ^d University of Sussex, Brighton BN19RH, UK
 ^e University of Tennessee at Chattanooga, Chattanooga, TN 37403
 ^e University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
 ^b KIT, Universitä Karlsruhe (TH), Kaiserstraße 12, 76131 Karlsruhe, Germany

- University of Tennessee, Knoxville, TN 37996
- ^j University of South Carolina, Columbia, SC 29208

Main project funding:

Office of Science

^k Los Alamos National Laboratory, Los Alamos, NM 87545 ¹University of Winnipeg, Winnipeg, Manitoba R3B2E9, Canada

- ^m North Carolina State University, Raleigh, NC 27695-8202
- ⁿ Universidad Nacional Autónoma de México, México, D.F. 04510, México
- º University of Michigan, Ann Arbor, MI 48109
- P TRIUMF, Vancouver, Canada, V6T 2A3
- ^q Eastern Kentucky University, Richmond, KY 40475
- r National Institute of Standards and Technology, Gaithersburg, MD 20899

October 31, 2020

21 / 32

*Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Thank you for Listening

Any Questions?

CRYOGENIC

ACTIVELY SHIELDED NAB SPECTROMETER THE LARGEST CRYOGEN-FREE SYSTEM IN THE WORLD

- Used to make precision neutron decay measurements and test the weak interaction in the Standard Model of particle physics.
- The results will provide important inputs for astrophysical processes.
- Key measurements will be of the electron-neutrino correlation parameter, and the Fierz interference term in neutron beta decay.

Key Features:

- Detector is housed in a cryogen-free magnet system 7.5 m long and ø1.4 m.
- Magnet cold mass > 1 tonne, cooled by four Gifford McMahon cryocoolers.

ww.cryogenic.co.uk

Bonus Slides

3

<ロト < 四ト < 三ト < 三ト

Off Axis Expansion of Real Data

E. Mae Scott for the Nab Collaboration (Univ

Off Axis Expansion of Real Data

E. Mae Scott for the Nab Collaboration (University Magnetometry for the Nab Experiment

Solution: Expansion of Field using Modified Bessel Functions

The interior of the spectrometer is free of current and can be modeled as a solution to Laplace's equation:

$$\vec{H} = -\nabla \Phi \rightarrow \nabla^2 \Phi = 0$$

Assuming cylindrical symmetry, this is separable into radial and axial variables.

$$\frac{\partial^2 Z}{\partial z^2} = -k^2 Z \quad \rightarrow \quad Z(z) = a_1 \sin(kz) + a_2 \cos(kz)$$
$$\rho^2 \frac{\partial^2 R}{\partial \rho^2} + \rho \frac{\partial R}{\partial \rho} - k^2 \rho^2 R = 0 \quad \rightarrow \quad R(\rho) = b_1 l_0(k\rho) + b_2 K_0(k\rho)$$

Solution: Expansion of Field using Modified Bessel Functions

Bessel Function Expansion

$$B_{z}(\rho, z) = \frac{\delta \Phi}{\delta z} = \sum_{-\infty}^{\infty} ik I_{0}(k\rho) f_{k} e^{ikz}$$
$$B_{\rho}(\rho, z) = \frac{\delta \Phi}{\delta \rho} = \sum_{-\infty}^{\infty} k I_{1}(k\rho) f_{k} e^{ikz}$$

At $\rho = 0$, the B_z reduces to a Fourier series. If the transform is discretized as $k = 2\pi n/L$, $z = m\delta z$, and $L = N\delta z$

$$F[n] = \frac{1}{N} \sum_{m=0}^{N-1} B[m] e^{-i2\pi nm/N}$$

$$F_{z}[n] = l_{0}(\frac{2\pi n\rho}{L}) F[n] \rightarrow \quad B_{z}[m] = \sum_{n=0}^{N-1} F_{z}[n] e^{i2\pi nm/N}$$

$$F_{\rho}[n] = -il_{1}(\frac{2\pi n\rho}{L}) F[n] \rightarrow \quad B_{\rho}[m] = \sum_{n=0}^{N-1} -F_{\rho}[n] e^{i2\pi nm/N}$$

The data is not as good for fitting the upper detector...

The data is not as good for fitting the upper detector...

The data is not as good for fitting the upper detector...

 $(0.299 \pm 1.79, -2.665 \pm 2.17)$ mm.

Residues as a function of Z

Solution: Mapping the Field and Testing for Cylindrical Symmetry

By expanding the field in terms of sine and cosine, we can have a fit function with 2n + 1 parameters, consisting of the Fourier coefficients and the offset in x and y.

$$B_{mod}(z) = \sqrt{B_z^2 + B_\rho^2}$$
$$B_z(z) = \sum_{n=0} I_0(2\pi n\rho/L) \bigg[C[n] \cos(2\pi nz/L) - D[n] \sin(2\pi nz/L) \bigg]$$
$$B_\rho(z) = \sum_{n=0} I_1(2\pi n\rho/L) \bigg[C[n] \sin(2\pi nz/L) + D[n] \cos(2\pi nz/L) \bigg]$$

Choosing a sufficiently large L will restrict high wavenumber effects. This is optimized manually.

Mapping the Field: Analysis Challenge 2

- The spectrometer magnet is a series of solenoids.
- It is possible that the coils are offset from the physical flanges of the magnet.

Solution: Mapping the Field and Testing for Cylindrical Symmetry

Solution: Mapping the Field and Testing for Cylindrical Symmetry

Run 609, Fit from offsetting the data by (-0.20,0.12)

This agrees with the radial series fit of the magnetic axis!

- Radial: $(-0.21 \pm 0.03, 0.12 \pm 0.02)$ cm
- Bessel: (-0.186 ± 0.007, 0.105 ± 0.007) cm

Figure: Courtesty of J.Fry

・ 何 ト ・ ヨ ト ・ ヨ ト

E. Mae Scott for the Nab Collaboration (University Magnetometry for the Nab Experiment