Characterization of Segmented Semiconductor Detectors for Neutron Beta Decay

By: August Mendelsohn for the Nab Collaboration

Overview

- The Nab Experiment
- Unique setup at Manitoba
- Calibration/Optimization
- Summary/Future Work

Credit: Dr. Leah Broussard

The Nab Experiment and Motivation

• Neutron-a-b

- Beta decay to probe CKM unitarity
- 26' ToF spectrometer
- Segmented silicon diode detectors to collect decay products

Motivation

• Calibration of detection electronics

Courtesy of the Nab Collaboration

The Manitoba II Proton Source

Courtesy of R. Mammei

Energy Calibration

 Used 113Sn and 109Cd to calibrate for 30 KeV protons and up to 1Mev electrons

Energy Calibration

- Convert between ADC (arb) units to KeV
- Using known X-ray and Conversion electron peaks
- Corroborate using NIST estar data to account for losses through mylar foil

Energy Calibration vs. Detector Bias

- Remarkably consistent over a range of 200V
- Y-intercept decreases with bias magnitude, slopes remain similar
- Further study needed

Approx 0.6KeV/ADC + 0.4KeV

Peak Centroid vs. Detector Pixel

- Only powered a subset of pixels
- No significant relationship with detector symmetry
- May be due to individual gain stages for each pixel

ENC vs Filter Rise Time

- Proportional to the FWHM
- Used a Pulser to characterize
- DAQ uses a double trapezoidal filter to convolve waveforms

Credit to Billy Mcray at NCSU for these results

Trapezoidal Filter Rise Time

Summary

10

- Characterization with known X-rays and conversion electrons
- Calibration is stable with detector bias
- Spatial dependance for a given bias voltage is limited

Courtesy of the Nab Collaboration

Concurrent and Future Work

11

- See Session PL: Neutron Physics II: Precision Neutron Decay on Sunday to see further talks on:
 - Detector simulations (Leendert Hayen)
 - A test stand for the detector systems (Michelle Gervais)
 - In-situ calibration (Jin Ha Choi)
 - And a few more!

- Currently continuing effort to calibrate detectors at ORNL via a custom test stand
- Ongoing analysis of the data collected at Manitoba

The Nab Collaboration

National Laboratory

Office of Science

Noise Contributions

13

• Want to reduce typical noise contributions

- Thermal (Johnson) noise
 - Temperature and detector bias are coupled
 - Use of LN2 to achieve temperatures of 120°K
- Shot noise FET amplifier

