The Nab Neutron Decay Correlation Experiment

Dinko Počanić (for the Nab Collaboration)

University of Virginia

ACNS 08, Santa Fe, NM
11–15 May 2008
Outline

Experiment Basics
 Collaboration
 Motivation and Goals

Nab measurement principles
 Proton TOF and e-\(\nu\) correlation
 Spectrometer design
 Detection function

Overview of uncertainties
 Event statistics, rates, running time
 Systematic uncertainties

Summary
Nab Collaboration

Arizona State University R. Alarcon, S. Balascuta,
Los Alamos Nat’l. Lab. A. Klein, W.S. Wilburn,
University of Manitoba M.T. Gericke,
Univ. of New Hampshire J.R. Calarco, F.W. Hersman,
North Carolina State U. A. Young,
Oak Ridge Nat’l. Lab. J.D. Bowman, T.V. Cianciolo, S.I. Penttilä,
 K.P. Rykaczewski, G.R. Young,
Univ. of South Carolina V. Gudkov,
University of Tennessee G.L. Greene, R.K. Grzywacz,
University of Virginia L.P. Alonzi, S. Baeßler, M.A. Bychkov,

Home page – http://nab.phys.virginia.edu
Goals of the Experiment

- Measure the electron-neutrino parameter a in neutron decay with accuracy of $\frac{\Delta a}{a} \simeq 10^{-3}$

 current results: -0.1054 ± 0.0055 Byrne et al '02
 -0.1017 ± 0.0051 Stratowa et al '78
 -0.091 ± 0.039 Grigorev et al '68

- Measure the Fierz interference term b in neutron decay with accuracy of $\Delta b \simeq 3 \times 10^{-3}$

 current results: none
Goals of the Experiment

▶ Measure the electron-neutrino parameter a in neutron decay

\[
\frac{\Delta a}{a} \simeq 10^{-3}
\]

with accuracy of

\[-0.1054 \pm 0.0055 \quad \text{Byrne et al '02}
\]

\[-0.1017 \pm 0.0051 \quad \text{Stratowa et al '78}
\]

\[-0.091 \pm 0.039 \quad \text{Grigorev et al '68}
\]

▶ Measure the Fierz interference term b in neutron decay

\[
\Delta b \simeq 3 \times 10^{-3}
\]

with accuracy of

current results:

none
Goals of the Experiment

- Measure the electron-neutrino parameter a in neutron decay with accuracy of
 $$\frac{\Delta a}{a} \simeq 10^{-3}$$

 \[-0.1054 \pm 0.0055 \quad \text{Byrne et al '02} \]
 \[-0.1017 \pm 0.0051 \quad \text{Stratowa et al '78} \]
 \[-0.091 \pm 0.039 \quad \text{Grigorev et al '68} \]

- Measure the Fierz interference term b in neutron decay with accuracy of
 $$\Delta b \simeq 3 \times 10^{-3}$$

 current results: none
Goals of the Experiment

- Measure the electron-neutrino parameter a in neutron decay

 with accuracy of $\frac{\Delta a}{a} \simeq 10^{-3}$

 - -0.1054 ± 0.0055 Byrne et al '02
 - -0.1017 ± 0.0051 Stratowa et al '78
 - -0.091 ± 0.039 Grigorev et al '68

- Measure the Fierz interference term b in neutron decay

 with accuracy of $\Delta b \simeq 3 \times 10^{-3}$

 current results: none
Neutron Decay Parameters (SM)

\[
\frac{dw}{dE_e dΩ_e dΩ_ν} \simeq k_e E_e (E_0 - E_e)^2
\]

\[
\times \left[1 + a \frac{\vec{k}_e \cdot \vec{k}_ν}{E_e E_ν} + b \frac{m}{E_e} + \langle \vec{σ}_n \rangle \cdot \left(A \frac{\vec{k}_e}{E_e} + B \frac{\vec{k}_ν}{E_ν} + D \frac{\vec{k}_e \times \vec{k}_ν}{E_e E_ν} \right) \right]
\]

with:

\[
a = \frac{1 - |λ|^2}{1 + 3|λ|^2}
\]

\[
A = -2 \frac{|λ|^2 + \text{Re}(λ)}{1 + 3|λ|^2}
\]

\[
B = 2 \frac{|λ|^2 - \text{Re}(λ)}{1 + 3|λ|^2}
\]

\[
D = 2 \frac{\text{Im}(λ)}{1 + 3|λ|^2}
\]

\[
λ = \frac{G_A}{G_V} \quad (\text{with } τ_n \Rightarrow \text{CKM } V_{ud})
\]

(D \neq 0 \Leftrightarrow T \text{ inv. violation})
Neutron Decay Parameters (SM)

\[
\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq k_e E_e (E_0 - E_e)^2
\]

\[
\times \left[1 + a \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} + b \frac{m}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{k}_e}{E_e} + B \frac{\vec{k}_\nu}{E_\nu} + D \frac{\vec{k}_e \times \vec{k}_\nu}{E_e E_\nu} \right) \right]
\]

with:

\[
a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2}
\]

\[
A = -2 \frac{|\lambda|^2 + \text{Re}(\lambda)}{1 + 3|\lambda|^2}
\]

\[
B = 2 \frac{|\lambda|^2 - \text{Re}(\lambda)}{1 + 3|\lambda|^2}
\]

\[
D = 2 \frac{\text{Im}(\lambda)}{1 + 3|\lambda|^2}
\]

\[
\lambda = \frac{G_A}{G_V} \quad (\text{with } \tau_n \Rightarrow \text{CKM } V_{ud})
\]

(D \neq 0 \iff \text{T inv. violation})
Neutron Decay Parameters (SM)

\[
\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \simeq k_e E_e (E_0 - E_e)^2 \times \left[1 + a \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} + b \frac{m}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{k}_e}{E_e} + B \frac{\vec{k}_\nu}{E_\nu} + D \frac{\vec{k}_e \times \vec{k}_\nu}{E_e E_\nu} \right) \right]
\]

with:

\[
a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2}, \quad A = -2 \frac{|\lambda|^2 + \text{Re}(\lambda)}{1 + 3|\lambda|^2},
\]

\[
B = 2 \frac{|\lambda|^2 - \text{Re}(\lambda)}{1 + 3|\lambda|^2}, \quad D = 2 \frac{\text{Im}(\lambda)}{1 + 3|\lambda|^2}
\]

\[
\lambda = \frac{G_A}{G_V} \quad (\text{with } \tau_n \Rightarrow \text{CKM } V_{ud}) \quad (D \neq 0 \Leftrightarrow T \text{ inv. violation})
\]

D. Počanić (UVa)
n-decay Correlation Parameters Beyond V_{ud}

- Beta decay parameters constrain L-R symmetric model extensions to the SM.
 [Review: Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001)]

- Measurement of the electron-energy dependence of a and A can separately confirm CVC and absence of SCC.

- Fierz interference term, never measured for the neutron, offers a sensitive test of non-$(V - A)$ terms in the weak Lagrangian (S, T).

- A general connections exists between non-SM (e.g., S, T) terms in $d \rightarrow ue\bar{\nu}$ and limits on ν masses.
 [Ito + Prézaeu, PRL 94 (2005)]
n-decay Correlation Parameters Beyond V_{ud}

- Beta decay parameters constrain L-R symmetric model extensions to the SM.
 [Review: Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001)]

- Measurement of the electron-energy dependence of a and A can separately confirm CVC and absence of SCC.

- Fierz interference term, never measured for the neutron, offers a sensitive test of non-(\(V-A\)) terms in the weak Lagrangian (\(S, T\)).

- A general connections exists between non-SM (e.g., \(S, T\)) terms in \(d \to u\bar{e}\bar{\nu} \) and limits on \(\nu\) masses.
 [Ito + Prézaeu, PRL 94 (2005)]
n-decay Correlation Parameters Beyond V_{ud}

- Beta decay parameters constrain L-R symmetric model extensions to the SM. [Review: Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001)]

- Fierz interference term, never measured for the neutron, offers a sensitive test of non-$(V - A)$ terms in the weak Lagrangian (S, T).

- A general connection exists between non-SM (e.g., S, T) terms in $d \rightarrow ue\nu$ and limits on ν masses. [Ito + Prézaeu, PRL 94 (2005)]
n-decay Correlation Parameters Beyond V_{ud}

- Beta decay parameters constrain L-R symmetric model extensions to the SM.
 [Review: Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001)]

- Measurement of the electron-energy dependence of a and A can separately confirm CVC and absence of SCC.

- Fierz interference term, never measured for the neutron, offers a sensitive test of non-$(V - A)$ terms in the weak Lagrangian (S, T).

- A general connections exists between non-SM (e.g., S, T) terms in $d \rightarrow ue\bar{\nu}$ and limits on ν masses.
 [Ito + Prézaeu, PRL 94 (2005)]
Nab Measurement principles: Proton phase space

Note: For a given E_e, $\cos \theta_{e\nu}$ is a function of p_p^2 only.
Measurement principles: Proton momentum response

\[p^2 (\text{MeV}^2/c^2) \]

\[\text{Yield (arb. units)} \]

\[E_e = 0.075 \text{ MeV} \]
\[E_e = 0.236 \text{ MeV} \]
\[E_e = 0.450 \text{ MeV} \]
\[E_e = 0.700 \text{ MeV} \]

Slope = \(\beta_e \cdot a \)
Measurement principles: Spectrometer sketch

Elements of spectrometer to be shared with other n decay experiments, e.g., abBA.

D. Počanić (UVa)
Measurement principles: Spectrometer field profiles
Measurement principles: Detection function (I)

Proton time of flight in B field:

$$t_p = \frac{f(\cos \theta_{p,0})}{p_p} \quad \text{where} \quad \cos \theta_{p,0} = \left. \frac{\vec{p}_{p0} \cdot \vec{B}}{p_{p0}B} \right|_{\text{decay pt.}}.$$

For an adiabatically expanding field

$$p_{pz}(z) = p_p \sqrt{1 - \frac{B(z)}{B_0} \sin^2 \theta_{p,0} - \frac{e(U(z) - U_0)}{T_0}}$$

so that, prior to acceleration,

$$f(\cos \theta_{p,0}) = \int_{z_0}^l \frac{m_p}{\cos \theta_p(z)} \, dz = \int_{z_0}^l \frac{m_p}{\sqrt{1 - \frac{B(z)}{B_0} \sin^2 \theta_{p,0}}} \, dz.$$

To this we add effects of magnetic reflections and, later, of electric field acceleration.
Measurement principles: Detection function (II)

The proton momentum distribution within the phase space bounds is given by

\[P_p(p_p^2) = 1 + a \beta_e \cos \theta_{e\nu}, \quad \text{[recall: } \cos \theta_{e\nu} = f(p_p^2)\text{]} \]

while

\[P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2. \]

Detection function \(\Phi \) relates the proton momentum and time-of-flight distributions! To extract a reliably:

- \(\Phi \) must be as narrow as possible,
- \(\Phi \) must be understood very precisely.

Two methods ("A" and "B") pursued to specify \(\Phi \).
Measurement principles: Detection function (II)

The proton momentum distribution within the phase space bounds is given by

\[P_p(p_p^2) = 1 + a\beta e \cos \theta_{e\nu}, \quad \text{[recall: } \cos \theta_{e\nu} = f(p_p^2)\text{]} \]

while

\[P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2. \]

Detection function \(\Phi \) relates the proton momentum and time-of-flight distributions! To extract a reliably:

- \(\Phi \) must be as narrow as possible,
- \(\Phi \) must be understood very precisely.

Two methods ("A" and "B") pursued to specify \(\Phi \).
Measurement principles: Detection function (II)

The proton momentum distribution within the phase space bounds is given by

$$P_p(p_p^2) = 1 + a\beta_e \cos \theta_{e\nu}, \quad [\text{recall: } \cos \theta_{e\nu} = f(p_p^2)]$$

while

$$P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) \, dp_p^2.$$

Detection function Φ relates the proton momentum and time-of-flight distributions! To extract Φ reliably:

- Φ must be as narrow as possible,
- Φ must be understood very precisely.

Two methods ("A" and "B") pursued to specify Φ.

D. Počanić (UVa)
Measurement principles: Detection function (II)

The proton momentum distribution within the phase space bounds is given by

\[P_p(p^2_p) = 1 + a \beta_e \cos \theta_{e\nu}, \quad \text{[recall: } \cos \theta_{e\nu} = f(p^2_p)] \]

while

\[P_t \left(\frac{1}{t^2_p} \right) = \int P_p(p^2_p) \Phi \left(\frac{1}{t^2_p}, p^2_p \right) dp^2_p. \]

Detection function \(\Phi \) relates the proton momentum and time-of-flight distributions! To extract it reliably:

- \(\Phi \) must be as narrow as possible,
- \(\Phi \) must be understood very precisely.

Two methods ("A" and "B") pursued to specify \(\Phi \).
Measurement principles: Detection function (II)

The proton momentum distribution within the phase space bounds is given by

\[P_p(p_p^2) = 1 + a \beta_e \cos \theta_{e\nu}, \]

[recall: \(\cos \theta_{e\nu} = f(p_p^2) \)]

while

\[P_t \left(\frac{1}{t_p^2} \right) = \int P_p(p_p^2) \Phi \left(\frac{1}{t_p^2}, p_p^2 \right) \, dp_p^2. \]

Detection function \(\Phi \) relates the proton momentum and time-of-flight distributions! To extract a reliably:

- \(\Phi \) must be as narrow as possible,
- \(\Phi \) must be understood very precisely.

Two methods ("A" and "B") pursued to specify \(\Phi \).
Measurement principles: Detection function (II)

The proton momentum distribution within the phase space bounds is given by

\[P_p(p_p^2) = 1 + a \beta_e \cos \theta_{e\nu}, \quad [\text{recall: } \cos \theta_{e\nu} = f(p_p^2)] \]

while

\[P_t \left(\frac{1}{t_p^2} \right) = \int P_p(p_p^2) \Phi \left(\frac{1}{t_p^2}, p_p^2 \right) dp_p^2. \]

Detection function \(\Phi \) relates the proton momentum and time-of-flight distributions! To extract \(\Phi \) reliably:

- \(\Phi \) must be as narrow as possible,
- \(\Phi \) must be understood very precisely.

Two methods ("A" and "B") pursued to specify \(\Phi \).
Measurement principles: Detection function (II)

The proton momentum distribution within the phase space bounds is given by

\[P_p(p_p^2) = 1 + a\beta_e \cos \theta_{e\nu}, \quad \text{[recall: } \cos \theta_{e\nu} = f(p_p^2)\text{]} \]

while

\[P_t\left(\frac{1}{t_p^2}\right) = \int P_p(p_p^2) \Phi\left(\frac{1}{t_p^2}, p_p^2\right) dp_p^2. \]

Detection function \(\Phi \) relates the proton momentum and time-of-flight distributions! To extract a reliably:

- \(\Phi \) must be as narrow as possible,
- \(\Phi \) must be understood very precisely.

Two methods ("A" and "B") pursued to specify \(\Phi \).
Measurement principles: Detection function (III)

\[P_p(p_p^2) \propto 1 + a \beta(E_e) \cos \theta_{ev} \]
\[2p_p p_\nu \cos \theta_{ev} = p_p^2 - p_e^2 - p_\nu^2 \]

\[E_e = 550 \text{ keV} \]
Measurement principles: Detection function (IV)

Theoretical calculation (method “B”)

Realistic Monte Carlo simulation (1 M decays, GEANT4)

Note: 1. central, straight portion sensitive to physics (a),
2. edges sensitive to detection function and calibration.
Measurement principles: Detection function (IV)

Theoretical calculation (method “B”)

Realistic Monte Carlo simulation (1M decays, GEANT4)

Note: 1. central, straight portion sensitive to physics (a),
2. edges sensitive to detection function and calibration.
Statistical uncertainties for \(a \) and \(b \)

Statistical uncertainties for \(a \)

<table>
<thead>
<tr>
<th>(E_{e,\text{min}})</th>
<th>0</th>
<th>100 keV</th>
<th>100 keV</th>
<th>300 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{p,\text{max}})</td>
<td>–</td>
<td>–</td>
<td>10 (\mu \text{s})</td>
<td>10 (\mu \text{s})</td>
</tr>
<tr>
<td>(\sigma_a)</td>
<td>2.4/\sqrt{N}</td>
<td>2.5/\sqrt{N}</td>
<td>2.6/\sqrt{N}</td>
<td>3.5/\sqrt{N}</td>
</tr>
<tr>
<td>(\sigma_a^\dagger)</td>
<td>2.5/\sqrt{N}</td>
<td>2.6/\sqrt{N}</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

\(\dagger \) with \(E_{\text{cal}} \) and \(l \) variable.

Statistical uncertainties for \(b \)

<table>
<thead>
<tr>
<th>(E_{e,\text{min}})</th>
<th>0</th>
<th>100 keV</th>
<th>200 keV</th>
<th>300 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_b)</td>
<td>7.5/\sqrt{N}</td>
<td>10.1/\sqrt{N}</td>
<td>15.6/\sqrt{N}</td>
<td>26.3/\sqrt{N}</td>
</tr>
<tr>
<td>(\sigma_b^{\dagger\dagger})</td>
<td>7.7/\sqrt{N}</td>
<td>10.3/\sqrt{N}</td>
<td>16.3/\sqrt{N}</td>
<td>27.7/\sqrt{N}</td>
</tr>
</tbody>
</table>

\(\dagger\dagger \) with \(E_{\text{cal}} \) variable.
Statistical uncertainties for a and b

Statistical uncertainties for a

<table>
<thead>
<tr>
<th>$E_{e,\text{min}}$</th>
<th>0</th>
<th>100 keV</th>
<th>100 keV</th>
<th>300 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{p,\text{max}}$</td>
<td>–</td>
<td>–</td>
<td>10 μs</td>
<td>10 μs</td>
</tr>
</tbody>
</table>

σ_a

2.4/\sqrt{N}

2.5/\sqrt{N}

2.6/\sqrt{N}

3.5/\sqrt{N}

σ_a^{\dagger}

2.5/\sqrt{N}

2.6/\sqrt{N}

–

–

† with E_{cal} and l variable.

Statistical uncertainties for b

<table>
<thead>
<tr>
<th>$E_{e,\text{min}}$</th>
<th>0</th>
<th>100 keV</th>
<th>200 keV</th>
<th>300 keV</th>
</tr>
</thead>
</table>

σ_b

7.5/\sqrt{N}

10.1/\sqrt{N}

15.6/\sqrt{N}

26.3/\sqrt{N}

$\sigma_b^{\dagger\dagger}$

7.7/\sqrt{N}

10.3/\sqrt{N}

16.3/\sqrt{N}

27.7/\sqrt{N}

†† with E_{cal} variable.
Statistical uncertainties for \(a \) and \(b \)

Statistical uncertainties for \(a \)

<table>
<thead>
<tr>
<th>(E_{e,\text{min}})</th>
<th>0</th>
<th>100 keV</th>
<th>100 keV</th>
<th>300 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{p,\text{max}})</td>
<td>–</td>
<td>–</td>
<td>10 (\mu s)</td>
<td>10 (\mu s)</td>
</tr>
</tbody>
</table>

\[
\sigma_a = \frac{2.4}{\sqrt{N}} \quad \frac{2.5}{\sqrt{N}} \quad \frac{2.6}{\sqrt{N}} \quad \frac{3.5}{\sqrt{N}}
\]

\[
\sigma_a^\dagger = \frac{2.5}{\sqrt{N}} \quad \frac{2.6}{\sqrt{N}} \quad – \quad –
\]

\(^\dagger \) with \(E_{\text{cal}} \) and \(l \) variable.

Statistical uncertainties for \(b \)

<table>
<thead>
<tr>
<th>(E_{e,\text{min}})</th>
<th>0</th>
<th>100 keV</th>
<th>200 keV</th>
<th>300 keV</th>
</tr>
</thead>
</table>

\[
\sigma_b = \frac{7.5}{\sqrt{N}} \quad \frac{10.1}{\sqrt{N}} \quad \frac{15.6}{\sqrt{N}} \quad \frac{26.3}{\sqrt{N}}
\]

\[
\sigma_b^{\dagger\dagger} = \frac{7.7}{\sqrt{N}} \quad \frac{10.3}{\sqrt{N}} \quad \frac{16.3}{\sqrt{N}} \quad \frac{27.7}{\sqrt{N}}
\]

\(^{\dagger\dagger} \) with \(E_{\text{cal}} \) variable.
Event rates, statistics and running times

FnPB n decay rate w/nominal 1.4 MW SNS operation: $r_n \approx 19.5/(\text{cm}^3\text{s})$.

Nab fiducial volume is: $V_f \approx 2 \times 2.5 \times 2\text{cm}^3 = 20\text{ cm}^3$.

This gives a rate of about 400 evts./sec.

In a typical ~ 10-day run of $7 \times 10^5\text{ s}$ of net beam time we would achieve

$$\frac{\sigma_a}{a} \approx 2 \times 10^{-3} \quad \text{and} \quad \sigma_b \approx 6 \times 10^{-4}$$

We plan to collect several samples of 10^9 events in several 6-week runs.

Consequently, overall accuracy will not be statistics-limited.
Event rates, statistics and running times

FnPB n decay rate w/nominal 1.4 MW SNS operation: $r_n \approx 19.5/(\text{cm}^3\text{s})$.

Nab fiducial volume is: $V_f \approx 2 \times 2.5 \times 2 \text{cm}^3 = 20 \text{ cm}^3$.

This gives a rate of about 400 evts./sec.

In a typical ~ 10-day run of 7×10^5 s of net beam time we would achieve

$$\frac{\sigma_a}{a} \approx 2 \times 10^{-3} \quad \text{and} \quad \sigma_b \approx 6 \times 10^{-4}$$

We plan to collect several samples of 10^9 events in several 6-week runs.

Consequently, overall accuracy will not be statistics-limited.
Event rates, statistics and running times

FnPB n decay rate w/nominal 1.4 MW SNS operation: $r_n \approx 19.5/(cm^3s)$.

Nab fiducial volume is: $V_f \approx 2 \times 2.5 \times 2cm^3 = 20 cm^3$.

This gives a rate of about 400 evts./sec.

In a typical ~ 10-day run of 7×10^5 s of net beam time we would achieve

$$\frac{\sigma_a}{a} \approx 2 \times 10^{-3} \quad \text{and} \quad \sigma_b \approx 6 \times 10^{-4}$$

We plan to collect several samples of 10^9 events in several 6-week runs.

Consequently, overall accuracy will not be statistics-limited.
Event rates, statistics and running times

FnPB n decay rate w/nominal 1.4 MW SNS operation: $r_n \simeq 19.5/(\text{cm}^3\text{s})$.

Nab fiducial volume is: $V_f \simeq 2 \times 2.5 \times 2\text{cm}^3 = 20\text{ cm}^3$.

This gives a rate of about 400 evts./sec.

In a typical ~ 10-day run of $7 \times 10^5 \text{ s}$ of net beam time we would achieve

$$\frac{\sigma_a}{a} \simeq 2 \times 10^{-3} \quad \text{and} \quad \sigma_b \simeq 6 \times 10^{-4}$$

We plan to collect several samples of 10^9 events in several 6-week runs.

Consequently, overall accuracy will not be statistics-limited.
Event rates, statistics and running times

FnPB n decay rate w/nominal 1.4 MW SNS operation: $r_n \simeq 19.5/(\text{cm}^3\text{s})$.

Nab fiducial volume is: $V_f \simeq 2 \times 2.5 \times 2 \text{cm}^3 = 20 \text{ cm}^3$.

This gives a rate of about 400 evts./sec.

In a typical ~ 10-day run of 7×10^5 s of net beam time we would achieve

$$\frac{\sigma_a}{a} \simeq 2 \times 10^{-3} \quad \text{and} \quad \sigma_b \simeq 6 \times 10^{-4}$$

We plan to collect several samples of 10^9 events in several 6-week runs.

Consequently, overall accuracy will not be statistics-limited.
Systematic uncertainties and checks

- Uncertainties due to spectrometer response
 - Neutron beam profile: 100 µm shift of beam center induces $\Delta a/a \sim 0.2\%$; cancels when averaging over detectors; measurement of asymmetry pins it down sufficiently;
 - Magnetic field map:
 - field expansion ratio $r_B = B_{TOF}/B_0$;
 - $\Delta a/a \sim 10^{-3} \Rightarrow \Delta r_B/r_B = 10^{-3}$, (use calibrated Hall probe);
 - field curvature α, (via proton asymmetry measurement);
 - field bumps $\Delta B/B$ must be kept below 2×10^{-3} level;
 - Flight path length: $\Delta l \leq 30 \mu m \Rightarrow$ fitting parameter; (\exists consistency check);
 - Homogeneity of the electric field;
 - Rest gas: requires vacuum of 10^{-9} torr or better;
 - Doppler effect;
 - Adiabaticity;
Systematic uncertainties and checks (II)

- Uncertainties due to the detector
 - Detector alignment;
 - Electron energy calibration: requirement 10^{-4}; we’ll use radioactive sources, other strategies, also as fitting parameter;
 - Trigger hermiticity: affected by impact angle, backscattering, TOF cutoff (to reduce accid. bgd.);
 - TOF uncertainties;
 - Edge effects;

- Backgrounds
 - Neutron beam related background;
 - Particle trapping;

- Uncertainties in b: fewer than for a (no proton detection); dominant are energy calibration and electron backgrounds.
The Nab experiment plans a simultaneous high-statistics measurement of neutron decay parameters a and b with

$$\frac{\Delta a}{a} \simeq 10^{-3} \quad \text{and} \quad \Delta b \simeq 3 \times 10^{-3}.$$

- Basic properties of the Nab spectrometer are well understood; details of the fields are under study in extensive analytical and Monte Carlo calculations.
- Elements of spectrometer will be shared with other neutron decay experiments, e.g., $abBA$.
- Development of $abBA/Nab$ Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning in 2010.
The Nab experiment plans a simultaneous high-statistics measurement of neutron decay parameters a and b with

$$\Delta a \overset{a}{\sim} 10^{-3} \quad \text{and} \quad \Delta b \overset{b}{\sim} 3 \times 10^{-3}.$$

- Basic properties of the Nab spectrometer are well understood; details of the fields are under study in extensive analytical and Monte Carlo calculations.
- Elements of spectrometer will be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning in 2010.
The Nab experiment plans a simultaneous high-statistics measurement of neutron decay parameters a and b with

$$\frac{\Delta a}{a} \approx 10^{-3} \quad \text{and} \quad \Delta b \approx 3 \times 10^{-3}.$$

- Basic properties of the Nab spectrometer are well understood; details of the fields are under study in extensive analytical and Monte Carlo calculations.
- Elements of spectrometer will be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning in 2010.
The Nab experiment plans a simultaneous high-statistics measurement of neutron decay parameters a and b with

$$\frac{\Delta a}{a} \sim 10^{-3} \quad \text{and} \quad \Delta b \sim 3 \times 10^{-3}.$$

- Basic properties of the Nab spectrometer are well understood; details of the fields are under study in extensive analytical and Monte Carlo calculations.
- Elements of spectrometer will be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning in 2010.
SUMMARY

The Nab experiment plans a simultaneous high-statistics measurement of neutron decay parameters a and b with

$$\frac{\Delta a}{a} \approx 10^{-3} \quad \text{and} \quad \Delta b \approx 3 \times 10^{-3}.$$

- Basic properties of the Nab spectrometer are well understood; details of the fields are under study in extensive analytical and Monte Carlo calculations.
- Elements of spectrometer will be shared with other neutron decay experiments, e.g., abBA.
- Development of abBA/Nab Si detectors is ongoing and remains a technological challenge.
- Experiment received approval in Feb. 2008; could be ready for commissioning in 2010.